GrassmannCalculus`
WeightedPointFormQ |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
SetActiveAssociation
"Grassmann 3-Space"
PublicGrassmannAtlas |
The following are weighted points.
In[3]:=
WeightedPointFormQ |
e
x
e
y
e
z
e
x
e
y
e
z
Out[3]=
{True,True,True,True,True}
The following are not weighted point forms.
In[4]:=
WeightedPointFormQ |
e
x
e
x
Out[4]=
{False,False}
In[5]:=
SetActiveAssociation
"Euclidean 3-Space"
PublicGrassmannAtlas |
The following are no longer weighted point forms because we are no longer in a Point space.
In[6]:=
WeightedPointFormQ |
e
x
e
y
e
z
e
x
e
y
e
z
Out[6]=
{False,False,False,False,False}
You can compose a weighted point form by using . Note that the weight was chosen from the list of declared scalar symbols.
ComposePoint
In[7]:=
★A;
;W=a*
[p]
★ |
3
ComposePoint |
Out[7]=
a(★+++)
e
1
p
1
e
2
p
2
e
3
p
3
In[8]:=
WeightedPointFormQ |
★ |
★ |
★ |
★ |
Out[8]=
{True,True,True,True,True,False}
In[9]:=
★A;Clear[W]
|
""

