GrassmannCalculus`
StandardOrderingFunction |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
★A;
;
★ℬ |
5
The following all return because the expressions are the same.
True
In[3]:=
{x,x},{,},{⋀,⋀},{x⋀y,x⋀y},{y⋀x,y⋀x},{,},{pQZ,pQZ}
@@#&/@%
e
1
e
1
e
1
e
2
e
1
e
2
α
2
α
2
StandardOrderingFunction |
Out[3]=
{x,x},{,},{⋀,⋀},{x⋀y,x⋀y},{y⋀x,y⋀x},{,},{pQZ,pQZ}
e
1
e
1
e
1
e
2
e
1
e
2
α
2
α
2
Out[3]=
{True,True,True,True,True,True,True}
The following all return because the first element precedes the second element in the standard Grassmann order. Basis symbols come before other types of factors.
True
In[4]:=
{,},{,⋀},{,x},{,},{,pQZ}
@@#&/@%
e
1
e
2
e
1
e
1
e
2
e
5
e
5
α
2
e
5
StandardOrderingFunction |
Out[4]=
{,},{,⋀},{,x},{,},{,pQZ}
e
1
e
2
e
1
e
1
e
2
e
5
e
5
α
2
e
5
Out[4]=
{True,True,True,True,True}
Within basis symbols they are ordered by their position in the Basis.
In[5]:=
Table[{,b},{b,Basis}]
@@#&/@%
e
3
StandardOrderingFunction |
Out[5]=
{{,},{,},{,},{,},{,}}
e
3
e
1
e
3
e
2
e
3
e
3
e
3
e
4
e
3
e
5
Out[5]=
{False,False,True,True,True}
Here a Basis not in the standard Mathematica sort order is set. StandardOrderingFunction goes by the order in the Basis.
In[6]:=
Basis={pp,aa,qq,bb,hh};Table[{qq,b},{b,Basis}]
@@#&/@%★A;
;
StandardOrderingFunction |
★ℬ |
5
Out[6]=
{{qq,pp},{qq,aa},{qq,qq},{qq,bb},{qq,hh}}
Out[6]=
{False,False,True,True,True}
Vector symbols are ordered by their Mathematica sort order.
In[7]:=
Table{u,b},b,
@@#&/@%
★v |
StandardOrderingFunction |
Out[7]=
{{u,p},{u,q},{u,r},{u,s},{u,t},{u,u},{u,v},{u,w},{u,x},{u,y},{u,z}}
Out[7]=
{False,False,False,False,False,True,True,True,True,True,True}
The same for graded symbols.
In[8]:=
Table,,{b,{α,β,γ}}
@@#&/@%
β
2
b
2
StandardOrderingFunction |
Out[8]=
,,,,,
β
2
α
2
β
2
β
2
β
2
γ
2
Out[8]=
{False,True,True}
In[9]:=
Table,,{b,0,5}
@@#&/@%
β
3
β
b
StandardOrderingFunction |
Out[9]=
,,,,,,,,,,,
β
3
β
0
β
3
β
1
β
3
β
2
β
3
β
3
β
3
β
4
β
3
β
5
Out[9]=
{False,False,False,True,True,True}
In[10]:=
StandardOrderingFunction |
α
3
β
2
Out[10]=
True
The following elements are in standard Grassmann order. Note that scalar symbols, vector symbols and arbitrary symbols are lumped together and other Grassmann expressions come last.
In[11]:=
testItems=,a,pQZ,s,,⋀Outer[{#1,#2}&,testItems,testItems]//MatrixFormMap
@@#&,%,{2}//MatrixForm
e
3
α
2
e
1
e
3
StandardOrderingFunction |
Out[11]=
,a,pQZ,s,,⋀
e
3
α
2
e
1
e
3
Out[11]//MatrixForm=
|
|
|
|
|
| ||||||||||||
|
|
|
|
|
| ||||||||||||
|
|
|
|
|
| ||||||||||||
|
|
|
|
|
| ||||||||||||
|
|
|
|
|
| ||||||||||||
|
|
|
|
|
|
Out[11]//MatrixForm=
True | True | True | True | True | True |
False | True | True | True | True | True |
False | False | True | True | True | True |
False | False | False | True | True | True |
False | False | False | False | True | True |
False | False | False | False | False | True |
In[12]:=
Clear[testItems]
|
|
""

