SamplePublisher`GrassmannCalculus`
RandomGrassmannVectorElement |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
Some examples:
In[2]:=
SetBookVectorAssociation |
In[3]:=
RandomGrassmannVectorElement |
RandomGrassmannVectorElement |
RandomGrassmannVectorElement |
Out[3]=
7+6+2-3
e
1
e
2
e
3
e
4
Out[3]=
(13+++20)⋀(-35-2-3-50)
e
1
e
2
e
3
e
4
e
1
e
2
e
3
e
4
Out[3]=
(4+7+4+9)⋀(9+2+3)⋀(2-13-2)
e
1
e
2
e
3
e
4
e
2
e
3
e
4
e
1
e
2
e
3
The following generates m-elements in the subspace.
{,}
e
1
e
3
In[4]:=
RandomGrassmannVectorElement |
e
1
e
3
RandomGrassmannVectorElement |
e
1
e
3
RandomGrassmannVectorElement |
e
1
e
3
Out[4]=
e
1
e
3
Out[4]=
(2+2)⋀
e
1
e
3
e
1
Out[4]=
(-3+18)⋀(-+9)⋀(-6)
e
1
e
3
e
1
e
3
e
1
e
3
The following generates a random 2-element in a subspace defined by two random vectors and then checks that a linear combination of the two vectors is in the subspace.
In[5]:=
vector1=
[1]vector2=
[1]
[2,{vector1,vector2}]%//
[%⋀(avector1+bvector2)]
RandomGrassmannVectorElement |
RandomGrassmannVectorElement |
RandomGrassmannVectorElement |
★ |
ZeroQ |
Out[5]=
-+2-5+
e
1
e
2
e
3
e
4
Out[5]=
3-8+6+7
e
1
e
2
e
3
e
4
Out[5]=
(6(-+2-5+)+2(3-8+6+7))⋀(3(-+2-5+))
e
1
e
2
e
3
e
4
e
1
e
2
e
3
e
4
e
1
e
2
e
3
e
4
Out[5]=
-12⋀-54⋀+60⋀+168⋀-132⋀+246⋀
e
1
e
2
e
1
e
3
e
1
e
4
e
2
e
3
e
2
e
4
e
3
e
4
Out[5]=
True
|
""

