SamplePublisher`GrassmannCalculus`
FormIntegral |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
We show the evaluation of the integrals here but more complete information is given on the page.
One-dimensional integrals look very much like ordinary integrals.
In[2]:=
SetCoordinateVectorSpace |
The following specifies the integral domain as an inequality in an .
ImplicitRegion
In[3]:=
FormIntegral |
5
,{x}],xdx]EvaluateFormIntegrals |
Out[3]=
∫
ℴ
Out[3]=
2
Using parameters for the limits can result in Piecewise results.
In[4]:=
FormIntegral |
EvaluateFormIntegrals |
Out[4]=
∫
ℴ
Out[4]=
|
The following uses an for the domain.
Interval
In[5]:=
FormIntegral |
EvaluateFormIntegrals |
Out[5]=
∫
ℴ
Out[5]=
3
2
The following is a 2-dimensional integral using a 2-form and inequality for the domain.
In[6]:=
SetCoordinateVectorSpace |
FormIntegral |
EvaluateFormIntegrals |
Out[6]=
∫
ℴ
Out[6]=
4
3
The following is the same integral specified with a Simplex region.
In[7]:=
FormIntegral |
EvaluateFormIntegrals |
Out[7]=
∫
ℴ
Out[7]=
4
3
The following expresses a 2-dimensional integral in polar coordinates using as the volume factor. To avoid a Piecewise result we can include an Assumptions option in the evaluation.
r
In[8]:=
SetActiveSpacePreferences |
PublicGrassmannAtlas |
SwitchBasis |
FormIntegral |
EvaluateFormIntegrals |
Out[8]=
∫
ℴ
Out[8]=
π
2
R
But with circular or spherical region specification Mathematica automatically inserts the volume factor so we use:
In[9]:=
FormIntegral |
EvaluateFormIntegrals |
Out[9]=
∫
ℴ
Out[9]=
π
2
R
A 3-dimensional integral works analogously.
In[10]:=
SetCoordinateVectorSpace |
FormIntegral |
EvaluateFormIntegrals |
Out[10]=
∫
ℴ
Out[10]=
1
8
A is sensitive to the orientation of the differential form. This case reverses the sign of the result.
FormIntegral
In[11]:=
FormIntegral |
EvaluateFormIntegrals |
Out[11]=
∫
ℴ
Out[11]=
-
1
8
In the following we have to include the volume factor in the integrand.
In[12]:=
SetActiveSpacePreferences |
PublicGrassmannAtlas |
SwitchBasis |
FormIntegral |
EvaluateFormIntegrals |
Out[12]=
2
r
Out[12]=
r>0&&0<θ<π&&-π<φ≤π
Out[12]=
∫
ℴ
2
r
Out[12]=
4π
3
R
3
But here we leave it out.
In[13]:=
FormIntegral |
EvaluateFormIntegrals |
Out[13]=
∫
ℴ
Out[13]=
4π
3
R
3
The following is an indefinite integral.
In[14]:=
SetCoordinateVectorSpace |
FormIntegral |
dx
2
a
2
x
2
c
EvaluateFormIntegrals |