SamplePublisher`GrassmannCalculus`
AggregateScalars |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
★ |
5
The following extracts all the scalar expressions from an exterior product.
In[3]:=
(a)⋀(-b(⊖))⋀(3(★-))⋀
[%]
e
1
e
2
e
2
e
2
e
2
m(n-m)
(-1)
e
4
AggregateScalars |
Out[3]=
(a)⋀(-b(⊖))⋀(3(★-))⋀
e
1
e
2
e
2
e
2
e
2
m(-m+n)
(-1)
e
4
Out[3]=
-3ab(⊖)⋀⋀(★-)⋀
m(-m+n)
(-1)
e
2
e
2
e
1
e
2
e
2
e
4
The following operates on the sum of two different products.
In[4]:=
(a)⋀(b)+(c)⋄(d)
[%]
e
1
e
2
e
3
e
4
AggregateScalars |
Out[4]=
(c)⋄(d)+(a)⋀(b)
e
3
e
4
e
1
e
2
Out[4]=
cd⋄+ab⋀
e
3
e
4
e
1
e
2
The following operates on complement expressions.
In[5]:=
,,
[%]
(a)⋀(b)
e
1
e
2
(a)⋀(b)
e
1
e
2
c((a)⋀(b))
e
1
e
2
AggregateScalars |
Out[5]=
,,
(a)⋀(b)
e
1
e
2
(a)⋀(b)
e
1
e
2
c(a)⋀(b)
e
1
e
2
Out[5]=
{ab⋀,ab⋀,abc⋀}
e
1
e
2
e
1
e
2
e
1
e
2
The following operates on a combination of all the types of products.
In[6]:=
(ap)⋀(bq)∘a(b+3)⋀
(cp)⋁⊖(-er)+
[%]
e
1
e
2
e
3
△ |
2
c⋄d
e
1
α
2
(a)⋀(b)
e
1
e
2
(c)⊖(d)
e
1
e
2
AggregateScalars |
Out[6]=
(ap)⋀(bq)∘a(b+3)⋀cp⋁⊖-er+
e
1
e
2
e
3
△
2
c⋄d
e
1
α
2
(a)⋀(b)
e
1
e
2
c⊖d
e
1
e
2
Out[6]=
-bdep⋀q∘(b+3)⋀p⋁⋄⊖r+
2
a
2
c
e
1
e
2
e
3
△
2
e
1
α
2
ab⋀
e
1
e
2
cd(⊖)
e
1
e
2
|
|
""

