GrassmannCalculus`
ComposeGeneralizedGradedForm |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
Set a 5-dimensional book vector space and turn on precedence showing.
In[2]:=
★ℬ |
5
★P |
Here only the Generalized product is expanded.
In[3]:=
x
{1,3}
y
{1,3}
p
{2,4}
△ |
2
q
{2,4}
ComposeGeneralizedGradedForm |
Out[3]=
x
{1,3}
y
{1,3}
p
{2,4}
△
2
q
{2,4}
Out[3]=
x
{1,3}
y
{1,3}
p
2
p
4
△
2
q
2
q
4
Here the regressive products are also expanded because they are inside the Generalized product.
In[4]:=
p
{2,4}
q
{2,4}
△ |
2
x
{1,3}
y
{1,3}
ComposeGeneralizedGradedForm |
Out[4]=
⋁⋁
p
{2,4}
q
{2,4}
△
2
x
{1,3}
y
{1,3}
Out[4]=
(+)⋁(+)(+)⋁(+)
p
2
p
4
q
2
q
4
△
2
x
1
x
3
y
1
y
3
Here we change the precedence such that only the central Generalized product is expanded.
In[5]:=
p
{2,4}
q
{2,4}
△ |
2
x
{1,3}
y
{1,3}
ComposeGeneralizedGradedForm |
Out[5]=
p
{2,4}
q
{2,4}
△
2
x
{1,3}
y
{1,3}
Out[5]=
p
{2,4}
q
2
q
4
△
2
x
1
x
3
y
{1,3}
Placeholders may be used instead of symbols. (This appears not to work but works nonselectively with ComposeGradedForm.)
In[6]:=
x
{1,3}
y
{1,3}
|
{2,4}
△ |
2
|
{2,4}
ComposeInteriorGradedForm |
ComposeGradedForm |
Out[6]=
x
{1,3}
y
{1,3}
{2,4}
△
2
{2,4}
Out[6]=
x
{1,3}
y
{1,3}
{2,4}
△
2
{2,4}
Out[6]=
(+)⋀(+)+(+)(+)
x
1
x
3
y
1
y
3
2
4
△
2
2
4
In[7]:=
★★P |
|
""

