GrassmannCalculus`
ConvertCliffordToGeneralized |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
★A;
;
★ℬ |
4
★P |
The generalized product is the pathway to the customary expression in terms of exterior and interior products.
In[3]:=
p⋄q%//
%//
ConvertCliffordToGeneralized |
ConvertGeneralizedToInterior |
Out[3]=
p⋄q
Out[3]=
pq+pq
△
0
△
1
Out[3]=
p⊖q+p⋀q
In[4]:=
★A;
;
⋄%//
%//
★ℬ |
6
★P |
α
2
β
4
ConvertCliffordToGeneralized |
ConvertGeneralizedToInterior |
Out[4]=
α
2
β
4
Out[4]=
α
2
△
0
β
4
α
2
△
1
β
4
α
2
△
2
β
4
Out[4]=
-⊖+(⊖)⋀-(⊖)⋀+⋀
β
4
α
2
β
4
α
2
α
3
β
4
α
3
α
2
β
4
α
2
In this expression some simplification can be performed as the last term is zero.
In[5]:=
α
3
β
4
ConvertCliffordToGeneralized |
SimplifyGeneralizedProducts |
ConvertGeneralizedToInterior |
Out[5]=
α
3
β
4
Out[5]=
α
3
△
0
β
4
α
3
△
1
β
4
α
3
△
2
β
4
α
3
△
3
β
4
Out[5]=
-⊖+-
β
4
α
3
α
3
△
1
β
4
α
3
△
2
β
4
Out[5]=
-⊖-(⊖(⋀))⋀+(⊖(⋀))⋀-(⊖(⋀))⋀+(⊖)⋀⋀-(⊖)⋀⋀+(⊖)⋀⋀
β
4
α
3
β
4
α
4
α
5
α
6
β
4
α
4
α
6
α
5
β
4
α
5
α
6
α
4
β
4
α
4
α
5
α
6
β
4
α
5
α
4
α
6
β
4
α
6
α
4
α
5
When metric elements are present will use . may further simplify.
SimplifyGeneralizedProducts
ConvertGeneralizedToInterior
ToMetricElements
In[6]:=
e
3
e
2
e
4
ConvertCliffordToGeneralized |
SimplifyGeneralizedProducts |
ToMetricElements |
Out[6]=
e
3
e
2
e
4
Out[6]=
e
3
△
0
e
2
e
4
e
3
△
1
e
2
e
4
Out[6]=
(⋀)⊖-⋀⋀
e
2
e
4
e
3
e
2
e
3
e
4
Out[6]=
-(⋀⋀)
e
2
e
3
e
4
|
|
""


