SamplePublisher`GrassmannCalculus`
IntegralConstantsRules |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
Using :
Inactive[Integrate]
In[2]:=
Inactive[Integrate][πaf[x],x]%//.
IntegralConstantsRules |
Out[2]=
∫aπf[x]x
Out[2]=
aπ∫f[x]x
In[3]:=
Inactive[Integrate][πa(f[x]+g[x]),x]%//.
IntegralConstantsRules |
Out[3]=
∫aπ(f[x]+g[x])x
Out[3]=
aπ∫(f[x]+g[x])x
In[4]:=
Inactive[Integrate][πg[u]f[x,y],{x,1,2},{y,a,b}]%//.
IntegralConstantsRules |
Out[4]=
2
∫
1
b
∫
a
Out[4]=
πg[u]f[x,y]yx
2
∫
1
b
∫
a
Using ;
FormIntegral
In[5]:=
SetEuclideanNSpace[1,{x},"Form"]
[Undefined,3yf[x]dx]%//.
FormIntegral |
IntegralConstantsRules |
Out[5]=
∫
ℴ
Out[5]=
3ydxf[x]
∫
ℴ
In[6]:=
SetEuclideanNSpace[2,{x,y},"Form"]
[Undefined,3yg[x,y]f[x]dx⋀dy]%//.
FormIntegral |
IntegralConstantsRules |
Out[6]=
∫
ℴ
Out[6]=
3yf[x]g[x,y]dx⋀dy
∫
ℴ
In the following, is not an integration variable because the integration is only over .
y
dx
In[7]:=
SetEuclideanNSpace[2,{x,y},"Form"]
[Undefined,3yg[x,y]f[x]dx]%//.
FormIntegral |
IntegralConstantsRules |
Out[7]=
∫
ℴ
Out[7]=
3ydxf[x]g[x,y]
∫
ℴ
|
|
""

