GrassmannCalculus`
BivectorFormQ |
| BivectorFormQ[x] returns True if x is clearly in the form of a bivector, that is, an element of grade 2 which does not contain the Origin, and False otherwise. | |
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
SetActiveAssociation
"Grassmann Plane"
PublicGrassmannAtlas |
The following are bivector forms.
In[3]:=
BivectorFormQ |
e
x
e
y
α
2
e
x
e
y
e
x
e
y
e
x
e
y
Out[3]=
{True,True,True,True,True,True}
The following are not.
In[4]:=
BivectorFormQ |
α
3
e
x
e
y
Out[4]=
{False,False,False,False}
The following test some more general expressions in a Book basis.
In[5]:=
SetBookVectorAssociation |
In[6]:=
B=
[b]
ComposeBivector |
Out[6]=
b
1
e
1
e
2
b
2
e
1
e
3
b
3
e
2
e
3
In[7]:=
BivectorFormQ |
1
e
2
e
★ |
Out[7]=
{True,True,True,True,False,False}
|
|
""

