GrassmannCalculus`
Cobasis |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
SetActiveSpacePreferences |
PublicGrassmannAtlas |
The Cobasis of the GrassmannPlane are:
In[3]:=
Cobasis |
Out[3]=
{⋀,-(★⋀),★⋀}
e
x
e
y
e
y
e
x
Using the Listable attribute of the various Grassmann products, the exterior product of the Basis and Cobasis gives n copies of the basis n-element. The sign of each cobasis element cancels any negative sign produced by rearranging the factors to canonical order.
In[4]:=
Basis⋀
%//
Cobasis |
★ |
Out[4]=
{★⋀⋀,⋀-(★⋀),⋀★⋀}
e
x
e
y
e
x
e
y
e
y
e
x
Out[4]=
{★⋀⋀,★⋀⋀,★⋀⋀}
e
x
e
y
e
x
e
y
e
x
e
y
The following show the notation for the cobasis of (used mainly in the book) and one method for evaluation.
e
x
In[5]:=
e
x
CobasisElement |
Out[5]=
e
x
Out[5]=
-(★⋀)
e
y
The following calculation illustrates equation 2.21 in the book. The cobasis of a basis element is obtained by replacing it in the basis n-element by a sign factor and factoring it out.
In[6]:=
★⋀⋀/.
%/.
%//
e
x
e
y
e
x
|
2
|
i_
i-1
(-1)
★ |
Out[6]=
★⋀⋀
2
e
y
Out[6]=
★⋀-1⋀
e
y
Out[6]=
-(★⋀)
e
y
The Cobasis is the same as:
In[7]:=
GradeCobasis |
Out[7]=
{⋀,-(★⋀),★⋀}
e
x
e
y
e
y
e
x
All the cobasis elements of all grades are given by:
In[8]:=
GrassmannCobases |
Out[8]=
{{★⋀⋀},{⋀,-(★⋀),★⋀},{,-,★},{1}}
e
x
e
y
e
x
e
y
e
y
e
x
e
y
e
x
|
|
""

