GrassmannCalculus`
ScalarAtomQ |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
SetEuclideanNSpace[3,{x,y,z},"Vector"]
With the in this space the ScalarAtoms are:
In[3]:=
ScalarAtoms |
SpecialScalars |
Out[3]=
,a,b,c,★c,d,★n,★λ,★0,x,y,z,★g,_,,,,
(-1)
_,_,_
★σ
★t
_
0
_
{0}
Out[3]=
★g,★n,,★λ,★0,,★c,_,
_,_,_
★σ
★t
(-1)
The following are all recognized as scalars.
In[4]:=
ScalarAtomQ |
★c |
1,0,1
★σ
α
0
α
{0}
Out[4]=
{True,True,True,True,True,True}
The various special scalars are not recognized as but are recognized as or as scalar expressions.
ScalarSymbols
ScalarAtoms
In[5]:=
ScalarSymbolQ |
ScalarAtomQ |
ScalarExpressionQ |
Out[5]=
False
Out[5]=
True
Out[5]=
True
|
""

