GrassmannCalculus`
ExpandExteriorProducts |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
★A;
;
★ℬ |
4
In[3]:=
(a+b)⋀(c+d)⋀(e+f)
[%]
[%]
e
1
e
3
e
2
e
3
e
3
e
4
ExpandExteriorProducts |
SimplifyExteriorProducts |
Out[3]=
(a+b)⋀(c+d)⋀(e+f)
e
1
e
3
e
2
e
3
e
3
e
4
Out[3]=
(a)⋀(c)⋀(e)+(a)⋀(c)⋀(f)+(a)⋀(d)⋀(e)+(a)⋀(d)⋀(f)+(b)⋀(c)⋀(e)+(b)⋀(c)⋀(f)+(b)⋀(d)⋀(e)+(b)⋀(d)⋀(f)
e
1
e
2
e
3
e
1
e
2
e
4
e
1
e
3
e
3
e
1
e
3
e
4
e
3
e
2
e
3
e
3
e
2
e
4
e
3
e
3
e
3
e
3
e
3
e
4
Out[3]=
ace⋀⋀+acf⋀⋀+adf⋀⋀-bcf⋀⋀
e
1
e
2
e
3
e
1
e
2
e
4
e
1
e
3
e
4
e
2
e
3
e
4
Here only the exterior product is expanded.
In[4]:=
★A;(x+y⊖(p+q))⋁(u+v⋀(w+z))
[%]
ExpandExteriorProducts |
Out[4]=
(x+y⊖(p+q))⋁(u+v⋀(w+z))
Out[4]=
(x+y⊖(p+q))⋁(u+v⋀w+v⋀z)
|
|
""


