GrassmannCalculus`
ExpandInteriorProducts |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
Here we evaluate an interior product in steps starting with .
ExpandInteriorProducts
In[2]:=
★A;(a⋀+b⋀+c⋀)⊖(d+e+f)
[%]
[%]Collect
[%],Basis
e
1
e
2
e
1
e
3
e
2
e
3
e
1
e
2
e
3
ExpandInteriorProducts |
SimplifyInteriorProducts |
ToMetricElements |
Out[2]=
(a⋀+b⋀+c⋀)⊖(d+e+f)
e
1
e
2
e
1
e
3
e
2
e
3
e
1
e
2
e
3
Out[2]=
a⋀⊖d+a⋀⊖e+a⋀⊖f+b⋀⊖d+b⋀⊖e+b⋀⊖f+c⋀⊖d+c⋀⊖e+c⋀⊖f
e
1
e
2
e
1
e
1
e
2
e
2
e
1
e
2
e
3
e
1
e
3
e
1
e
1
e
3
e
2
e
1
e
3
e
3
e
2
e
3
e
1
e
2
e
3
e
2
e
2
e
3
e
3
Out[2]=
ad(⋀⊖)+ae(⋀⊖)+af(⋀⊖)+bd(⋀⊖)+be(⋀⊖)+bf(⋀⊖)+cd(⋀⊖)+ce(⋀⊖)+cf(⋀⊖)
e
1
e
2
e
1
e
1
e
2
e
2
e
1
e
2
e
3
e
1
e
3
e
1
e
1
e
3
e
2
e
1
e
3
e
3
e
2
e
3
e
1
e
2
e
3
e
2
e
2
e
3
e
3
Out[2]=
(-ae-bf)+(ad-cf)+(bd+ce)
e
1
e
2
e
3
Here only the interior product is expanded.
In[3]:=
(x+y⊖(p+q))⋁(u+v⋀(w+z))
[%]
ExpandInteriorProducts |
Out[3]=
(x+y⊖(p+q))⋁(u+v⋀(w+z))
Out[3]=
(x+y⊖p+y⊖q)⋁(u+v⋀w+v⋀z)
|
|
""


