GrassmannCalculus`
ComposeMPlaneElement |
|
| | ||||
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
savePreferences=
;
AllPreferences |
Set book 4-dimensional Point space.
In[3]:=
★A
;
★ |
4
Compose a 3-Plane.
In[4]:=
ComposeMPlaneElement |
Out[4]=
(★++++)⋀(+++)⋀(+++)⋀(+++)
c
1
e
1
c
2
e
2
c
3
e
3
c
4
e
4
c
5
e
1
c
6
e
2
c
7
e
3
c
8
e
4
c
9
e
1
c
10
e
2
c
11
e
3
c
12
e
4
c
13
e
1
c
14
e
2
c
15
e
3
c
16
e
4
The current space needs to be a point space. If it is not, no composition will occur.
In[5]:=
★A;
;
[3,a],
;
[3,a]//Column
★ℬ |
3
ComposeMPlaneElement |
★ |
3
ComposeMPlaneElement |
Out[5]=
ComposeMPlaneElement[3,a] |
(★+ a 1 e 1 a 2 e 2 a 3 e 3 a 4 e 1 a 5 e 2 a 6 e 3 a 7 e 1 a 8 e 2 a 9 e 3 a 10 e 1 a 11 e 2 a 12 e 3 |
You can compose m-plane elements in any dimension (although some may simplify to zero). For example, a 3-plane in a space of 1 or 2 dimensions is zero.
In[6]:=
Table
;
[3,c],{i,1,4}//Column
[Part[%,1,{1,2}]]
★ |
i
ComposeMPlaneElement |
★ |
Out[6]=
(★+ c 1 e 1 c 2 e 1 c 3 e 1 c 4 e 1 |
(★+ c 1 e 1 c 2 e 2 c 3 e 1 c 4 e 2 c 5 e 1 c 6 e 2 c 7 e 1 c 8 e 2 |
(★+ c 1 e 1 c 2 e 2 c 3 e 3 c 4 e 1 c 5 e 2 c 6 e 3 c 7 e 1 c 8 e 2 c 9 e 3 c 10 e 1 c 11 e 2 c 12 e 3 |
(★+ c 1 e 1 c 2 e 2 c 3 e 3 c 4 e 4 c 5 e 1 c 6 e 2 c 7 e 3 c 8 e 4 c 9 e 1 c 10 e 2 c 11 e 3 c 12 e 4 c 13 e 1 c 14 e 2 c 15 e 3 c 16 e 4 |
Out[6]=
{0,0}
You can compose lists of m-plane elements.
In[7]:=
★ |
3
ComposeMPlaneElement |
Out[7]=
(★+ c 1 e 1 c 2 e 2 c 3 e 3 c 4 e 1 c 5 e 2 c 6 e 3 |
(★+ c 1 e 1 c 2 e 2 c 3 e 3 c 4 e 1 c 5 e 2 c 6 e 3 c 7 e 1 c 8 e 2 c 9 e 3 |
In[8]:=
ComposeMPlaneElement |
Out[8]=
(★+ e 1 α 1 e 2 α 2 e 3 α 3 e 1 α 4 e 2 α 5 e 3 α 6 e 1 α 7 e 2 α 8 e 3 α 9 |
(★+ e 1 β 1 e 2 β 2 e 3 β 3 e 1 β 4 e 2 β 5 e 3 β 6 e 1 β 7 e 2 β 8 e 3 β 9 |
In[9]:=
ComposeMPlaneElement |
Out[9]=
(★+ e 1 α 1 e 2 α 2 e 3 α 3 e 1 α 4 e 2 α 5 e 3 α 6 |
(★+ e 1 β 1 e 2 β 2 e 3 β 3 e 1 β 4 e 2 β 5 e 3 β 6 e 1 β 7 e 2 β 8 e 3 β 9 |
You can make the starting index of the coefficients whatever you want.
In[10]:=
★ |
4
ComposeMPlaneElement |
Out[10]=
(★+ a 0 e 1 a 1 e 2 a 2 e 3 a 3 e 4 a 4 e 1 a 5 e 2 a 6 e 3 a 7 e 4 a 8 e 1 a 9 e 2 a 10 e 3 a 11 e 4 |
(★+ c k e 1 c 1+k e 2 c 2+k e 3 c 3+k e 4 c 4+k e 1 c 5+k e 2 c 6+k e 3 c 7+k e 4 c 8+k e 1 c 9+k e 2 c 10+k e 3 c 11+k e 4 c 12+k e 1 c 13+k e 2 c 14+k e 3 c 15+k e 4 |
Note that all the scalar symbols generated as coefficients of the basis elements have been automatically declared as scalar symbols.
In[11]:=
ScalarSymbols
Out[11]=
{a,b,c,d,e,f,g,h,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}
a
0
a
1
a
2
a
3
a
4
a
5
a
6
a
7
a
8
a
9
a
10
a
11
a
12
c
1
c
2
c
3
c
4
c
5
c
6
c
7
c
8
c
9
c
10
c
11
c
12
c
13
c
14
c
15
c
16
c
k
c
1+k
c
2+k
c
3+k
c
4+k
c
5+k
c
6+k
c
7+k
c
8+k
c
9+k
c
10+k
c
11+k
c
12+k
c
13+k
c
14+k
c
15+k
α
1
α
2
α
3
α
4
α
5
α
6
α
7
α
8
α
9
β
1
β
2
β
3
β
4
β
5
β
6
β
7
β
8
β
9
You can also generate templates for simple m-plane elements using the placeholder symbol. This allows you to tab through the composed result and enter your own values.
In[12]:=
ComposeMPlaneElement |
|
Out[12]=
(★++++)⋀(+++)⋀(+++)
e
1
e
2
e
3
e
4
e
1
e
2
e
3
e
4
e
1
e
2
e
3
e
4
You can also compose specific m-planes by dotting lists of coefficients with the Basis inside of the exterior product.
In[13]:=
{1,2,3,4,5}.Basis⋀{0,a,b,c,d}.Basis⋀{0,6,7,8,9}.Basis
Out[13]=
(★+2+3+4+5)⋀(a+b+c+d)⋀(6+7+8+9)
e
1
e
2
e
3
e
4
e
1
e
2
e
3
e
4
e
1
e
2
e
3
e
4
One could also use this construction to compose a specific m-plane by a combination of points and vectors.
In[14]:=
★ |
|
★ |
|
★ |
|
Out[14]=
(★++++)⋀(★++++)⋀(+++)
e
1
e
2
e
3
e
4
e
1
e
2
e
3
e
4
e
1
e
2
e
3
e
4
In[15]:=
RestorePreferences |
""
