GrassmannCalculus`
ExpandAndSimplifyCliffordProducts |
|
| | ||||
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
Set the book default to establish scalars and vectors.
In[2]:=
★A;
ExpandCliffordProducts
SimplifyCliffordProducts
ExpandAndSimplifyCliffordProducts
ToMetricElements
In[3]:=
★P |
e
1
e
2
e
1
e
3
e
2
e
3
ExpandCliffordProducts |
SimplifyCliffordProducts |
ExpandAndSimplifyCliffordProducts |
ToMetricElements |
Out[3]=
(a⋀+b⋀)⋄(c+d)
e
1
e
2
e
1
e
3
e
2
e
3
Out[3]=
(a⋀)⋄(c)+(a⋀)⋄(d)+(b⋀)⋄(c)+(b⋀)⋄(d)
e
1
e
2
e
2
e
1
e
2
e
3
e
1
e
3
e
2
e
1
e
3
e
3
Out[3]=
ac(⋀)⋄+ad(⋀)⋄+bc(⋀)⋄+bd(⋀)⋄
e
1
e
2
e
2
e
1
e
2
e
3
e
1
e
3
e
2
e
1
e
3
e
3
Out[3]=
ac(⋀)⋄+ad(⋀)⋄+bc(⋀)⋄+bd(⋀)⋄
e
1
e
2
e
2
e
1
e
2
e
3
e
1
e
3
e
2
e
1
e
3
e
3
Out[3]=
(ac+bd)+(-bc+ad)⋀⋀
e
1
e
1
e
2
e
3
Using a symbolic expression, expands only the Clifford products in a Grassmann expression.
ExpandCliffordProducts
In[4]:=
★A;X=(a+b)⊖(z+w)+(ax+b+cy)⋄(ex⋀y+f)X1=
[X]
ExpandCliffordProducts |
Out[4]=
(a+b)⊖(w+z)+(b+ax+cy)⋄(f+ex⋀y)
Out[4]=
(a+b)⊖(w+z)+b⋄f+b⋄(ex⋀y)+(ax)⋄f+(ax)⋄(ex⋀y)+(cy)⋄f+(cy)⋄(ex⋀y)
Applying to gives:
SimplifyCliffordProducts
X1
In[5]:=
SimplifyCliffordProducts |
Out[5]=
bf+afx+cfy+(a+b)⊖(w+z)+aex⋄(x⋀y)+cey⋄(x⋀y)+bex⋀y
However, applying directly to the expression gives the same result.
ExpandAndSimplifyCliffordProducts
In[6]:=
ExpandAndSimplifyCliffordProducts |
Out[6]=
bf+afx+cfy+(a+b)⊖(w+z)+aex⋄(x⋀y)+cey⋄(x⋀y)+bex⋀y
Note that is neither expanded, nor simplified to zero, since it is not a Clifford product.
(a+b)⊖(z+w)
You can also use new symbols as long as you assert their grades, or you can override the grades of currently declared symbols. Here we assert that is of grade 0, making it a scalar. (Note also that although has been asserted to be a 5-element, it has not been simplified to zero in this 4-space, since it is not a Clifford produ
x
A
In[7]:=
★ℬ |
4
y
2
y
2
ExpandAndSimplifyCliffordProducts |
★Λ
5
★Λ
0
Out[7]=
A+(x+)⋄(x+)
y
2
y
2
Out[7]=
A++⋄+2x
2
x
y
2
y
2
y
2
In[8]:=
★PP;Clear[X,X1]
|
|
|
""


