SamplePublisher`GrassmannCalculus`
IntegralBreakout |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
In[2]:=
Inactive[Integrate][af[x]+bg[x],x]%//
IntegralBreakout |
Out[2]=
∫(af[x]+bg[x])x
Out[2]=
a∫f[x]x+b∫g[x]x
In[3]:=
Inactive[Integrate][af[x]+bg[x],{x,a,b},{y,c,d}]%//
IntegralBreakout |
Out[3]=
b
∫
a
d
∫
c
Out[3]=
af[x]yx+bg[x]yx
b
∫
a
d
∫
c
b
∫
a
d
∫
c
Integrands are automatically expanded and all constants are factored out.
In[4]:=
Inactive[Integrate][(af[x]+bg[x])(cf[x]-dg[x]),x]%//
IntegralBreakout |
Out[4]=
∫(af[x]+bg[x])(cf[x]-dg[x])x
Out[4]=
ac∫x+bc∫f[x]g[x]x-ad∫f[x]g[x]x-bd∫x
2
f[x]
2
g[x]
Breaking out a .
FormIntegral
In[5]:=
SetEuclideanNSpace[2,{x,y},"Form"]
[0<x<1&&1<y<3,(ax+by)(+2)dx⋀dy]%//
%//
FormIntegral |
2
x
IntegralBreakout |
EvaluateFormIntegrals |
Out[5]=
∫
ℴ
2
x
Out[5]=
2axdx⋀dy+adx⋀dy+2bydx⋀dy+bydx⋀dy
∫
ℴ
∫
ℴ
3
x
∫
ℴ
∫
ℴ
2
x
Out[5]=
5a
2
28b
3
|
|
""

