GrassmannCalculus`
DeclareUserVectorSymbols (★V) |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
Set the GrassmannPlane coordinate system.
In[2]:=
SetCoordinateVectorSpace |
The following are the and the components that comprise it.
VectorSymbols
In[3]:=
UserVectorSymbolsAllBasisSymbolsUserFormSymbolsVectorSymbols
Out[3]=
{p,q,r,s}
Out[3]=
dx,dy,,,,
e
x
e
y
e
x
e
y
Out[3]=
{α,β,ψ,ω}
Out[3]=
dx,dy,p,q,r,s,α,β,ψ,ω,,,,
e
x
e
y
e
x
e
y
The following clear the . But basis and form vectors remain. You could also clear the but the various bases symbols will always be present. There is no Grassmann algebra without them!
UserVectorSymbols
UserFormSymbols
In[4]:=
DeclareUserVectorSymbols[{}]UserVectorSymbolsAllBasisSymbolsUserFormSymbolsVectorSymbols
Out[4]=
{}
Out[4]=
dx,dy,,,,
e
x
e
y
e
x
e
y
Out[4]=
{α,β,ψ,ω}
Out[4]=
dx,dy,α,β,ψ,ω,,,,
e
x
e
y
e
x
e
y
Declare a new set of . These replace any previous user vector symbols.
UserVectorSymbols
In[5]:=
DeclareUserVectorSymbols[,,,]UserVectorSymbols
★v |
Out[5]=
{,,,}
Out[5]=
dx,dy,,,,,α,β,ψ,ω,,,,
e
x
e
y
e
x
e
y
Additional vector symbols can be added using , ().
DeclareExtraVectorSymbols
★★V
In[6]:=
★★V |
★v |
Out[6]=
{,,ℛ,,,,}
Out[6]=
dx,dy,,,ℛ,,,,,α,β,ψ,ω,,,,
e
x
e
y
e
x
e
y
|
""

