GrassmannCalculus`
Dimension (★D) |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
Suppose you declare a 10-space. Dimension then has the value 10.
In[2]:=
★A;
;BasisDimension,
★ℬ |
10
★D |
Out[2]=
{,,,,,,,,,}
e
1
e
2
e
3
e
4
e
5
e
6
e
7
e
8
e
9
e
10
Out[2]=
{10,10}
Set the point Grassmann3Space.
In[3]:=
SetGrassmannNSpace[3,{x,y,z},"Vector"]
The Dimension is now 4 because the Origin is an independent 1-element. Nevertheless, geometrically and physically this represents a 3-dimensional space.
In[4]:=
Basis
★D |
Out[4]=
{★,,,}
e
x
e
y
e
z
Out[4]=
4
|
|
""

