GrassmannCalculus`
ExpandVectorSpaceComplements |
|
| | ||||
Details and Options
Examples
(1)
Basic Examples
(1)
In[1]:=
<<GrassmannCalculus`
Here we evaluate a Grassmann complement in steps starting with .
ExpandGrassmannComplement
In[2]:=
★A;
[%]
[%]
[%]
(a⋀+b⋀+c⋀)
e
1
e
2
e
1
e
3
e
2
e
3
ExpandVectorSpaceComplements |
SimplifyVectorSpaceComplements |
ConvertComplements |
Out[2]=
a⋀+b⋀+c⋀
e
1
e
2
e
1
e
3
e
2
e
3
Out[2]=
a⋀
e
1
e
2
b⋀
e
1
e
3
c⋀
e
2
e
3
Out[2]=
a⋀+b⋀+c⋀
e
1
e
2
e
1
e
3
e
2
e
3
Out[2]=
c-b+a
e
1
e
2
e
3
Here only the vector space complement is expanded. Note that the first item is a regular Grassmann complement.
In[3]:=
x+y⋄(p+q)
u+v⋀(w+z)
ExpandVectorSpaceComplements |
Out[3]=
x+y⋄(p+q)
u+v⋀(w+z)
Out[3]=
x+y⋄(p+q)
u
v⋀(w+z)
|
|
""


