In[]:=
Sat 17 Feb 2024 22:23:02
Parent: free-probability.nb
Related discussion: “random shuffling” on mathoverflow post (mathoverflow-simplified-sgd.nb)
Disentangling lemma: from “Lecture 3: Golden-Thompson and the Frobenius inner product” paperpile
math.SE post - Showing
Related discussion: “random shuffling” on mathoverflow post (mathoverflow-simplified-sgd.nb)
Disentangling lemma: from “Lecture 3: Golden-Thompson and the Frobenius inner product” paperpile
math.SE post - Showing
ETr(AA)+2n
T
A
T
A
3
n
In[]:=
(*Fitsformulaoftheforman+b+...*)getIntegerFormula[seq_]:=getIntegerFormula[seq,Length[seq]];getIntegerFormula[seq_,order_]:=Module[{form,lvals,coef},form=Total[coef[#]&/@Range[order]];lvals=Table[form,{n,Length[seq]}];form/.First@Solve[lvals==seq]];
2
n
#
n
Numeric moments
Numeric moments
Second moment
Second moment
Out[]//TableForm=
n | value | |
1 | 3 | |
2 | 12 | |
3 | 33 | |
4 | 72 | |
5 | 135 | |
6 | 228 |
Third moment
Third moment
In[]:=
Clear[a];getThirdMoment[n_]:=(A=Array[a,{n,n}];distSpec=#NormalDistribution[]&/@Variables[A];Expectation[Tr[A.A.A.A.A.A],distSpec]);seq=Table[{n,getThirdMoment[n]},{n,1,5}];TableForm[seq,TableHeadings->{{},{"n","value"}}]
Out[]//TableForm=
n | value | |
1 | 15 | |
2 | 64 | |
3 | 183 | |
4 | 432 | |
5 | 895 |
Enumerate paths
Enumerate paths
In[]:=
Clear[a];n=2;A=Array[a[Min[#1,#2],Max[#1,#2]]&,{n,n}];A=Array[a,{n,n}];SeedRandom[1];subVars[p_]:=With[{vars=Variables[p]},Thread[varsRandomInteger[{-5,5},Length[vars]]]];(*Splitstermlike2xinto{2,x},and"x"into{1,x*)split[term_]:=Module[{},result=(term/.a0_Integer*b0_->{a0,b0});If[Head@result===List,result,{1,result}]];termList=List@@Expand@Tr[A.A.A.A];(*returnsTrueifthetermhasanevenpower*)positiveTerm[term_]:=Count[{term},]>0;positiveTermList=Select[termList,positiveTerm];{counts,terms}=Transpose[split/@termList];distSpec=#NormalDistribution[]&/@Variables[A];val[term_]:=Expectation[term,distSpec];vals=val/@terms;poses=Flatten@Position[vals,_?Positive];val[Tr[A.A.A.A]]TableForm[{counts[[poses]],terms[[poses]],vals[[poses]]}]
b0_?EvenQ
a0_
Related moment formulas
Related moment formulas
Mathematica q https://mathematica.stackexchange.com/questions/293600/recovering-formulas-for-sequences-with-integer-coefficients
Normalized entries
Normalized entries
Out[]//TableForm=
Tr[A.A] | {1,1,1,1,1} | 1 |
Tr[A. T A | {1,2,3,4,5} | n |
Tr[A.A.A.A] | 3,2, 5 3 3 2 7 5 | 1+ 2 n |
Tr[A.A. T A | 3, 5 2 7 3 9 4 11 5 | 2+ 1 n |
Tr[A.A. T A T A | 3,3, 11 3 9 2 27 5 | 2 n |
Tr[A. T A T A | {3,5,7,9,11} | 1+2n |
Standard Normal entries
Standard Normal entries
Out[]//TableForm=
Tr[A.A] | {1,2,3,4,5} | n |
Tr[A. T A | {1,4,9,16,25} | 2 n |
Tr[A.A.A.A] | {3,8,15,24,35} | 2n+ 2 n |
Tr[A.A. T A | {3,10,21,36,55} | n+2 2 n |
Tr[A.A. T A T A | {3,12,33,72,135} | 2n+ 3 n |
Tr[A. T A T A | {3,20,63,144,275} | 2 n 3 n |
In[]:=
Clear[a,A,n];getMoment[n_,expr_]:=(traceExpr=Tr[expr]/.A->Array[a,{n,n}];distSpec=#NormalDistribution[0,1]&/@Variables[traceExpr];Expectation[traceExpr,distSpec]);exprs={A.A.A.A.A.A,A.A.A.A.A.A,A.A.A.A.A.A,A.A.A.A.A.A};getMomentSequence[expr_]:=Table[getMoment[n,expr],{n,1,5}];table=Table[With[{seq=getMomentSequence[expr]},{TraditionalForm@expr,TraditionalForm[seq],getIntegerFormula[seq]}],{expr,exprs}];TableForm[table]
Out[]//TableForm=
A.A.A.A.A.A | {15,48,105,192,315} | 8n+6 2 n 3 n |
T A T A T A | {15,80,273,720,1595} | 4n+8 2 n 3 n 4 n |
A.A.A. T A T A T A | {15,64,183,432,895} | 4n+10 2 n 4 n |
A. T A T A T A | {15,144,603,1728,3975} | 4 2 n 3 n 4 n |
Two variable traces
Two variable traces
Out[]//TableForm=
Tr[A.A.A.A] | {3,8,15,24,35} | 2n+ 2 n |
Tr[A.A.B.B] | {1,2,3,4,5} | n |
Tr[A.A. T A T A | {3,12,33,72,135} | 2n+ 3 n |
Tr[A.B. T B T A | {1,8,27,64,125} | 3 n |
Two variable norms
Two variable norms
Out[]//TableForm=
2 A. T A | {3,20,63,144} | 2 n 3 n |
2 A.B | {1,8,27,64} | 3 n |
2 A.B. T B T A | {9,168,1053,4032} | -72n+150 2 n 3 n 4 n |
In[]:=
SF=StringForm;headers=SF["n=``",#]&/@Range[4];vals={9,168,1053,4032};TableForm[Transpose[{headers,vals}]]
Out[]//TableForm=
n=1 | 9 |
n=2 | 168 |
n=3 | 1053 |
n=4 | 4032 |
With 3 variables
With 3 variables
Answered in https://mathoverflow.net/questions/459694/expected-norm-of-a-product-of-gaussian-matrices
By Carlo Beenakker
By Carlo Beenakker
Out[]//TableForm=
s=1 |
| ||||
s=2 |
| ||||
s=3 |
| ||||
s=4 |
|
Wick’s automatic calculation
Wick’s automatic calculation
Disentangling Lemma
Disentangling Lemma
math.SE https://math.stackexchange.com/questions/4818437/showing-e-operatornametraaatate-operatornametraataat-for-gaus
From https://homes.cs.washington.edu/~jrl/teaching/cse599Isp21/notes/lecture3.pdf
Just the permutations of even
Just the permutations of even