VisibLie_E8

A Theory Of Everything Visualizer - Pane 2 Edition
Out[]=
​
interactionPane
2) Math: Number Theory: Mod2-9 Pascal/Sierpinski Triangle
Pascal triangle size
5 
n
2
=32
modulus
8
refresh
p3D
2D
slider
inch
slider
inches
value
5
physics
shwAxes
labels
noColor
bckGrnd
0
w
b
bckGrnd
pGrad0
oldColors
srcCode
Mod 8 Pascal Triangle Sierpinski Map
(Red Framed numbers indicate numeric state values)
st
1
Force=Luca Series⟹
1
1
3
3
4
4
7
7
3
11
2
18
5
29
7
47
4
76
3
123
7
199
2
322
1
521
3
843
4
7
3
2
5
7
4
3
7
2
1
3
4
7
3
2
5
7
8-Sum↗ =
Fibonacci
⟹
7
7
7
7
6
6
5
5
3
3
3
-5
3
-13
6
-26
1
-47
7
-81
8
7
7
6
5
3
8
3
3
6
1
7
8
7
7
6
5
3
8
3
3
Sum↗ = Fibonacci ⟹
1
1
1
1
2
2
3
3
5
5
8
8
5
13
5
21
2
34
7
55
1
89
8
144
1
233
1
377
2
610
3
987
5
8
5
5
2
7
1
8
1
1
2
3
5
8
5
5
Sum↑ =
n-1
2
⟹
1
1
2
2
4
4
8
8
8
16
8
32
8
64
8
128
8
256
8
512
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

n
0
 = |Singular ⟹
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

n
1
 = |n Linear ⟹
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
1
9
2
10
3
11
4
12
5
13
6
14
7
15
8
16
1
17
2
18
3
19
4
20
5
21
6
22
7
23
8
24
1
25
2
26
3
27
4
28
5
29
6
30
7
31

n+1
2
 = Triangular⟹
1
1
3
3
6
6
2
10
7
15
5
21
4
28
4
36
5
45
7
55
2
66
6
78
3
91
1
105
8
120
8
136
1
153
3
171
6
190
2
210
7
231
5
253
4
276
4
300
5
325
7
351
2
378
6
406
3
435
1
465

n+2
3
 =Tetrahedral⟹
1
1
4
4
2
10
4
20
3
35
8
56
4
84
8
120
5
165
4
220
6
286
4
364
7
455
8
560
8
680
8
816
1
969
4
2
4
3
8
4
8
5
4
6
4
7

n-1
k-1

k≤n
= Pascal⟹
1
1
5
5
7
15
3
35
6
70
6
126
2
210
2
330
7
495
3
715
1
5
4
4
4
4
5
1
3
7
2
2
6
6
3
7
5
1
|
1
1
6
6
5
21
8
56
6
126
4
252
6
462
8
792
7
2
3
8
4
8
4
8
5
6
1
8
2
4
2
8
3
2
7
|
1
1
7
7
4
28
4
84
2
210
6
462
4
924
4
3
5
8
8
4
4
8
8
5
3
4
4
6
2
4
4
7
1
|
1
1
8
8
4
36
8
120
2
330
8
792
4
8
3
8
8
8
4
8
8
8
5
8
4
8
6
8
4
8
7
|
1
1
1
9
5
45
5
165
7
495
7
3
3
6
6
6
6
2
2
2
2
7
7
3
3
1
1
5
5
|
1
1
2
10
7
55
4
220
3
715
2
5
8
6
4
2
8
2
4
6
8
7
6
1
4
5
6
3
|
1
1
3
11
2
66
6
286
1
3
8
8
6
2
4
4
6
2
8
8
7
5
6
2
7
5
|
1
1
4
12
6
78
4
364
5
8
8
8
6
8
4
8
6
8
8
8
7
4
2
4
3
|
1
1
5
13
3
91
7
455