Regular Decagon
Regular Decagon
Author
Author
Eric W. Weisstein
July 3, 2018
July 3, 2018
©2018 Wolfram Research, Inc. except for portions noted otherwise
Definitions
Definitions
ineq=2Sqrt[5+2Sqrt[5]]a+y≥Sqrt[2(5+Sqrt[5])]x+Sqrt[5]y&&(1+Sqrt[5])(Sqrt[5-2Sqrt[5]]x+y)≤2Sqrt[5+2Sqrt[5]]a&&Sqrt[5+2Sqrt[5]]a≥2y&&2Sqrt[5+2Sqrt[5]]a+(1+Sqrt[5])(Sqrt[5-2Sqrt[5]]x-y)≥0&&2Sqrt[5+2Sqrt[5]]a+Sqrt[2(5+Sqrt[5])]x+y≥Sqrt[5]y&&2Sqrt[5+2Sqrt[5]]a+Sqrt[2(5+Sqrt[5])]x+Sqrt[5]y≥y&&2Sqrt[5+2Sqrt[5]]a+Sqrt[10-2Sqrt[5]]x+y+Sqrt[5]y≥0&&Sqrt[5+2Sqrt[5]]a+2y≥0&&2Sqrt[5+2Sqrt[5]]a≥(1+Sqrt[5])(Sqrt[5-2Sqrt[5]]x-y)&&2Sqrt[5+2Sqrt[5]]a+Sqrt[5]y≥Sqrt[2(5+Sqrt[5])]x+y;
implreg=ImplicitRegion[ineq,{x,y}];
assum=a>0;
verts=a{{1/2(1+Sqrt[5]),0},{1/4(3+Sqrt[5]),Sqrt[5/8+Sqrt[5]/8]},{1/2,1/2Sqrt[5+2Sqrt[5]]},{-(1/2),1/2Sqrt[5+2Sqrt[5]]},{1/4(-3-Sqrt[5]),Sqrt[5/8+Sqrt[5]/8]},{1/2(-1-Sqrt[5]),0},{1/4(-3-Sqrt[5]),-(1/2)Sqrt[1/2(5+Sqrt[5])]},{-(1/2),-(1/2)Sqrt[5+2Sqrt[5]]},{1/2,-(1/2)Sqrt[5+2Sqrt[5]]},{1/4(3+Sqrt[5]),-(1/2)Sqrt[1/2(5+Sqrt[5])]}};
reg=Polygon[verts];
Figure
Figure
In[]:=
Show[LaminaData["FilledRegularDecagon","Diagram"],ImageSize300]
Out[]=
Plots
Plots
Diagram
Diagram
LaminaData["FilledRegularDecagon","Diagram"]
DiscretizeRegion
DiscretizeRegion
Block[{a=1},DiscretizeRegion[#]]&/@{reg,implreg}
MinValue::ztest:Unable to decide whether numeric quantities ,1,1,MaxAbs[1],Abs[1],4,Abs[5+1],Abs5+ are equal to zero. Assuming they are.
2-4+2
2(5+Times[2])(5+Times[2])
+2(5+Times[2])(5+Times[2])
-21
+41
+222(5+1)
Plus[2]
10(5+Times[2])(5+Power[2])(5+Times[2])
Plus[2]
(1++-
5
)-2+2(5+Times[2])
Plus[2]
10(5+Times[2])
Plus[2]
5+Times[2]
+5(5+Times[2])
-5+Power[2]
-5Plus[2]
1
11+1
,
Polygon
Polygon
Properties
Properties
TableForm[FullSimplify[RegularPolygonInformation[10]],TableDepth2]
sides n | 10 |
vertex angle α {rad, degrees} | 4π 5 4π 5 |
central angle β {rad, degrees} | π 5 |
inradius r | 1 2 5+2 5 |
circumradius R | 1 2 5 ) |
area A | 5 2 5+2 5 |
Equations
Equations
Properties
Properties
Rehashing named triangle objects...
Area
Area
Area
Area
Assuming[assum,FullSimplify[Area[reg/.a1]]]
5
2
5+2
5
Assuming[assum,FullSimplify[Area[implreg/.a1]]]
5
2
5+2
5
Integrate
Integrate
Assuming[a>0,Area[ineq[x,y],{x,y}]]//FullSimplify//Timing
7.5881,
5
2
5+2
5
2
a
RegionMeasure
RegionMeasure
Assuming[assum,FullSimplify[RegionMeasure[reg/.a1]]]
5
2
5+2
5
Assuming[assum,FullSimplify[RegionMeasure[implreg/.a1]]]
5
2
5+2
5
AreaInertiaTensor
AreaInertiaTensor
Assuming[a>0,AreaInertiaTensor[ineq[x,y],{x,y}]]//FullSimplify//Timing
62.2486,,0,0,
5
48
1025+458
5
4
a
5
48
1025+458
5
4
a
Centroid
Centroid
Integrate
Integrate
Assuming[a>0,Centroid[ineq[x,y],{x,y}]]//FullSimplify//Timing
RegionCentroid
RegionCentroid
Convex
Convex
GeneralizedDiameter
GeneralizedDiameter
RadiiOfGyration
RadiiOfGyration
Region
Region
Lamina
Lamina
Diagonals
Diagonals