WOLFRAM|DEMONSTRATIONS PROJECT

The Sum of the Perimeters of Three Subtriangles

​
p
1
≈
6.54
p
2
≈
11.11
p
3
≈
18.19
p
≈
35.85
p
1
+
p
2
+
p
3
≈
35.85
A'A''
≈
2.67
B'B''
≈
3.83
C'C''
≈
4.48
C'B''
≈
2.67
A'C''
≈
3.83
A''B'
≈
4.48
Let ABC be a triangle. Let A'A'', B'B'', and C'C'' be tangents to the incircle of ABC and parallel to BC, AC, and AB, respectively. Let
p
be the perimeter of ABC and
p
1
,
p
2
, and
p
3
be the perimeters of AA'A'', BB'B'', and CC'C'', respectively. Then
p=
p
1
+
p
2
+
p
3
. Also, opposite sides of the hexagon A'A''B'B''C'C'' are equal, that is, A'A'' = C'B'', B'B'' = A'C'', and C'C'' = A''B'.