The Györgyi-Field Model for the Belousov-Zhabotinsky Reaction
The Györgyi-Field Model for the Belousov-Zhabotinsky Reaction
The Belousov–Zhabotinsky (BZ) reaction in a continuous-flow stirred-tank reactor (CSTR) can exhibit chaos, contrary to the Oregonator model, which has no chaotic solutions.
Deterministic chaos in the BZ reactor was studied in [1]. The scaled differential equations are:
dx
dτ
T
0
k
1
Y
0
y
k
2
2
H
Y
0
X
0
y
k
3
X
0
2
x
k
4
0.5
A
1.5
H
-0.5
X
0
Z
0
0.5
x
k
5
Z
0
k
f
dz
dτ
T
0
k
4
0.5
A
1.5
H
0.5
X
0
Z
0
0.5
x
k
5
X
0
k
6
V
0
k
7
k
f
dv
dτ
T
0
k
1
X
0
Y
0
V
0
y
k
2
2
H
Y
0
V
0
y
k
3
2
X
0
V
0
2
x
k
6
Z
0
k
f
y
k
6
Z
0
V
0
k
1
X
0
k
2
2
H
k
f
Y
0
where , , , and and the significance of all parameters ( for , , , , , , , , , and ) is given in [1].
τ=t/
T
0
x=X/
X
0
z=Z/
Z
0
v=V/
V
0
k
i
i=1,…,7
A
H
C
α
β
τ
X
0
Y
0
Z
0
Here, the bifurcation parameter is , the inverse of the reactor's residence time.
k
f