WOLFRAM|DEMONSTRATIONS PROJECT

Superposition of Quantum Harmonic Oscillator Eigenstates: Expectation Values and Uncertainties

​
quantum numbers
n
1
0
n
2
0
complex coefficient
c
0.25
θ
2π
0.25
This Demonstration studies a superposition of two quantum harmonic oscillator eigenstates in the position and momentum representations. The superposition consists of two eigenstates
ψ(x)=
1-c
2

ϕ
n
1
(x)+c
θ
e
ϕ
n
2
(x)
, where
ϕ
n
(x)=
1/4
mω
πℏ
1
n
2
n!
H
n
(
mω/ℏ
x)
-mω
2
x
(2ℏ)
e
and
H
n
(y)
is the
th
n
Hermite polynomial; the representations are connected via

ψ
(p)=
1
2πℏ
∞
∫
-∞
ψ(x)
-px/ℏ
e
dx
. The top-left panel shows the position space probability density
ψ(x)
2

, position expectation value


x
=
∞
∫
-∞
ψ(x)
2

xdx
, and position uncertainty
Δx=

2

x
-
2


x

. The top-right panel shows the momentum space probability density


ψ
(p)
2

, momentum expectation value


p
=
∞
∫
-∞


ψ
(p)
2

pdp
, and momentum uncertainty
Δp=

2

p
-
2


p

. The lower two panels show the real and imaginary parts of the wavefunction.