WOLFRAM NOTEBOOK

WOLFRAM|DEMONSTRATIONS PROJECT

Spherical Cosine Rule for Angles

point A
1.047
point B
1.047
1.083
solid angle
edges of supplementary
solid angle
supplementary solid angle
plane angles
additional labels
Let
ABC
be a spherical triangle on the surface of a unit sphere centered at
O=(0,0,0)
. Let the arcs opposite the corresponding vertices be
a
,
b
,
c
. Let
α
,
β
,
γ
be the angles at the vertices
A
,
B
,
C
.
Construct a supplementary spherical angle with apex
O'
and sides
a'=O'A'
,
b'=O'B'
,
c'=O'C'
. Let
A'
,
B'
,
C'
be the vertices and
α'
,
β'
,
γ'
be the plane angles at those vertices. Then:
a'=π-A
,
b'=π-B
,
c'=π-C
,
and
C'=π-c
,
B'=π-b
,
C'=π-c
.
These are the cosine rules for the sides of a spherical triangle:
cosa=cosbcosc+sinbsinccosα
,
cosb=cosccosa+sincsinacosβ
,
cosc=cosacosb+sinasinbcosγ
.
Note that
cos(π-x)=-cosx,sin(π-x)=sinx
and
cos(π-x)=-cosx,sin(π-x)=sinx
. Apply the cosine rules for the sides on the supplementary angle:
cos(π-α)=cos(π-β)cos(π-γ)+sin(π-β)sin(π-γ)cos(π-a)
,
-cosα=cosβcosγ-sinβsinγcosa
,
cosα=-cosβcosγ+sinβsinγcosa
.
In the same way,
cosβ=-cosαcosγ+sinαsinγcosb
,
cosγ=-cosβcosα+sinβsinαcosb
.
The last three identities are known as the cosine rules for the angles or the second cosine theorem for a spherical angle.
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.