WOLFRAM|DEMONSTRATIONS PROJECT

Probabilistic Interpretation of a Fractional Derivative

​
position
x
1
derivative order
α
0.2
step increment
h
0.001
series truncation order
r
50
Grünwald–Letnikov
approximation formulas
α
D
f(x)
≈
f(x)
-
μ
α
h
=
CB
AC
μ ≈ -
r
∑
k=1
γ(α, k)f(x - kh)
γ(α, k) =
k
(-1)
Γ(α + 1)
k!Γ(α - k + 1)
h
0.001
α
0.200
r
50
x
1
f(x)
0.368
μ
0.227
α
D
f
0.560
k
x - kh
f(x - kh)
γ(α, k)
γ(α, k)f(x - kh)
1
0.99900
0.368620
-0.200000
-0.073723
2
0.99800
0.369350
-0.080000
-0.029548
…
…
…
…
…
r = 50
0.95000
0.405550
-0.001575
-0.000639
r
∑
k=1
-0.607830
-0.227260
∞
∑
k=1
-1
This Demonstration explores the Grünwald–Letnikov definition of the fractional derivative and its numerical approximation. A geometric and probabilistic interpretation is depicted. The displayed tabular data supports the numerical calculation.