WOLFRAM NOTEBOOK

WOLFRAM|DEMONSTRATIONS PROJECT

Periodic Quantum Motion of Two Particles in a 3D Harmonic Oscillator Potential

time steps
50
initialize
trajectory with density
no
yes
α
0.4
x
0
initial position
0.4
y
0
initial position
0.5
z
0
initial position
0.3
initial distance
0.8
Bohmian quantum mechanics allows for both waves and particles, whereby particles are guided by the phase of the total wavefunction. The velocity of the particles becomes autonomous only with a periodic trajectory structure, when the corresponding wavefunction is in a degenerate stationary state of two eigenfunctions differing by a constant phase shift. This Demonstration studies the dynamic structure of the superposition of two three-dimensional eigenstates of the harmonic oscillator, which leads to periodic motion in configuration space. Two particles are placed on the margin of the harmonic potential randomly and separated by an initial distance
dx
.
The parameters have to be chosen carefully because singularities in the velocities or large oscillations can lead to very unstable trajectories. The motion is determined by the relative phase of the total wavefunction, which has no analog in classical particle mechanics. Changing the constant phase shift does not influence the structure of the trajectory; it only changes the length of the path.
The graphics show three-dimensional contour plots of the squared wavefunction (if enabled) and two initially neighboring trajectories. Red points mark the initial positions of the two quantum particles, and green points mark the actual positions. Blue points indicate the nodal point structure.
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.