WOLFRAM NOTEBOOK

WOLFRAM|DEMONSTRATIONS PROJECT

Pattern Recognition Primer

dataset:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
feature space and classifier
receiver operating characteristic
Pattern recognition algorithms are used to decide, for example, if a certain fish is salmon or sea bass, given the fish's width and lightness (Duda, 2000). Pattern recognition is the process of examining a pattern (e.g., the given width-lightness measurements) and assigning a class (e.g., salmon or sea bass) using a classifier (e.g., a rule based on the location of a graphical representation of the given sample with respect to other samples of the known class). Pattern recognition is used in diverse applications: handwriting recognition, financial analysis, gene expression, biometrics, and so on. A simple, yet applicable, example of a pattern recognition algorithm is the linear classifier. This is best understood by looking at two-dimensional examples in which patterns are represented as points and the classifier is represented as a straight line.
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.