WOLFRAM|DEMONSTRATIONS PROJECT

Pasch's Axiom in Euclidean Geometry

​
U
0.5
T
0.5
show lines
Tarski axiomatized Euclidean plane geometry in first-order logic using two primitive relations: the formula
β(XYZ)
means "
Y
lies between
X
and
Z
", while
δ(XYZU)
means "
X
is as distant from
Y
as
Z
is from
U
". Using
β
, Pasch's axiom has the form
(∃V)(β(XTU)∧β(YUZ)⇒β(XVY)∧β((ZTV))
.
This Demonstration illustrates the axiom.