WOLFRAM NOTEBOOK

WOLFRAM|DEMONSTRATIONS PROJECT

Orthogonal Systems of Circles on the Sphere

low axis height
0.5
low angle (radius from horizontal)
0.5
high angle (fraction of range)
0.5
sweep plane
This Demonstration shows two families of circles on the sphere such that each circle in one family is orthogonal to each circle of the other family. In the plane these are called Apollonian circles.
As a special example, consider the circles of latitude (cut by planes perpendicular to the polar axis) and the great circles of longitude (cut by planes containing the polar axis). With the exception of the two poles, every point of the sphere is intersected by exactly one circle from each family and these two circles are orthogonal where they intersect (one circle is north-south at the point and the other is east-west). In this Demonstration, the circles are the intersection of the sphere with planes rotating about two axes.
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.