WOLFRAM|DEMONSTRATIONS PROJECT

Multiple Angle Formulas for Sine and Cosine

​
n
2
3
4
5
6
7
8
9
10
sin(2θ) = 2sin(θ)cos(θ)
cos(2θ) =
2
cos
(θ)-
2
sin
(θ)
Mathematica can directly produce formulas for the sines and cosines of multiple angles.
Here is a derivation of these formulas. Euler's formula is
iθ
e
=cosθ+isinθ
. Then,
inθ
e
=cos(nθ)+isin(nθ)
, but also,
inθ
e
=
n
(cosθ+isinθ)
. The relation
cos(nθ)+isin(nθ)=
n
(cosθ+isinθ)
is known as de Moivre's theorem.
For the case
n=2
, the right-hand side can be expanded to give
cos(2θ)+isin(2θ)=
2
cos
θ+2icosθsinθ-
2
sin
θ
,
using
2
i
=-1
. Equating the imaginary and real parts leads to the double angle formulas
sin(2θ)=2cosθsinθ
,
cos(2θ)=
2
cos
θ-
2
sin
θ
.
The cases
n=3,4,5,…
are similar, using a binomial expansion.