WOLFRAM NOTEBOOK

WOLFRAM|DEMONSTRATIONS PROJECT

Gibbs Free Energy Minimization Applied to the Haber Process

mole fractions
comparison at 450 K
comparison at 650 K
temperature in K
500
Consider the high-pressure synthesis of ammonia (
3
H
2
+
N
2
2
NH
3
), known as the Haber process. This Demonstration shows plots of the mole fractions of all three components (
H
2
,
N
2
, and
NH
3
, in red, blue, and green, respectively) for temperatures ranging from 420 K to 800 K.
At very high pressure or low temperature, as expected from Le Chatelier's principle, the mole fraction of ammonia is significantly larger.
Here, the method of Gibbs free energy minimization is applied to efficiently solve the ammonia synthesis problem. Experimental values of the Gibbs free energy for all three components are taken from [1]. In addition, the residual Gibbs free energy is calculated using the PengRobinson equation of state.
Finally, the same problem is solved using the arc-length continuation technique and the reaction coordinates method (dotted line). These results are compared with the ones obtained using the Gibbs free energy minimization approach (solid diamonds) for the two selected temperatures of 450 K and 650 K. Excellent agreement is found between the two approaches.
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.