WOLFRAM|DEMONSTRATIONS PROJECT

Energy Levels of a Morse Oscillator

​
atom mass
m
1
(amu)
12
atom mass
m
2
​(amu)
16
fundamental vibrational frequency
ω
e
​
-1
cm
​
2170
dissociation energy
D
e
​
-1
cm
​
89600
equilibrium internuclear distance
R
e
(Å)
1.128
The Morse function
V(R)=
D
e

-2aR-
R
e

e
-2
-aR-
R
e

e

, where
R
is the internuclear distance, provides a useful approximation for the potential energy of a diatomic molecule. It is superior to the harmonic oscillator model in that it can account for anharmonicity and bond dissociation. The relevant experimental parameters are the dissociation energy
D
e
and the fundamental vibrational frequency
ω
e
, both conventionally expressed in wavenumbers (
-1
cm
), the equilibrium internuclear distance
R
e
in Angstrom units (Å), and the reduced mass
μ=
m
1
m
2
/(
m
1
+
m
2
)
in atomic mass units (amu). The exponential parameter is given by
a=
ω
e
μ/2
D
e
in appropriate units. The Schrödinger equation for the Morse oscillator is exactly solvable, giving the vibrational eigenvalues
ϵ
v
=
ω
e
v+
1
2
-
2
ω
e
4
D
e
2
v+
1
2
​
, for
v=0,1,2,...,
v
max
. Unlike the harmonic oscillator, the Morse potential has a finite number of bound vibrational levels with
v
max
≈2
D
e
/
ω
e
.