WOLFRAM NOTEBOOK

WOLFRAM|DEMONSTRATIONS PROJECT

Effect of Tube Diameter on Plug Flow Reactor

molar flow rate
temperature
pressure
reactor diameter (m)
0.25
This Demonstration calculates the effect of tube diameter on conversion, temperature, and pressure drop for a plug flow reactor (PFR). A first-order exothermic reaction takes place in a PFR with pressure drop and heat transfer through the walls. You can vary the reactor diameter, but the total feed flow rate is kept constant by changing the number of parallel reactors ("# equivalent reactors") in order to keep the total reactor cross section constant and thus to keep the total molar feed flow rate constant. For smaller-diameter reactors, the pressure drop is higher, which increases the volumetric flow rate and reduces the residence time and thus lowers the conversion. Also, heat transfer is more efficient for smaller-diameter reactors because the surface area per volume is larger, so the temperature increases less in the reactor, and this also lowers conversion.
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.