WOLFRAM
|
DEMONSTRATIONS PROJECT
Derivatives of Quintic Polynomials
c
o
e
f
f
i
c
i
e
n
t
o
f
5
x
-
3
4
x
2
3
x
3
2
x
5
x
3
c
o
n
s
t
a
n
t
t
e
r
m
4
i
n
t
e
r
v
a
l
-
1
0
≤
x
≤
1
0
x
2
r
e
s
e
t
F
(
x
)
=
-
3
5
x
+
2
4
x
+
3
3
x
+
5
2
x
+
3
x
+
4
T
h
e
f
i
r
s
t
d
e
r
i
v
a
t
i
v
e
i
s
:
′
F
(
x
)
=
-
1
5
4
x
+
8
3
x
+
9
2
x
+
1
0
x
+
3
F
o
r
x
e
q
u
a
l
t
o
2
,
′
F
(
2
)
=
-
1
1
7
T
h
e
s
e
c
o
n
d
d
e
r
i
v
a
t
i
v
e
i
s
:
′
′
F
(
x
)
=
-
6
0
3
x
+
2
4
2
x
+
1
8
x
+
1
0
F
o
r
x
e
q
u
a
l
t
o
2
,
′
′
F
(
2
)
=
-
3
3
8
T
h
e
t
h
i
r
d
d
e
r
i
v
a
t
i
v
e
i
s
:
(
3
)
F
(
x
)
=
-
1
8
0
2
x
+
4
8
x
+
1
8
F
o
r
x
e
q
u
a
l
t
o
2
,
(
3
)
F
(
2
)
=
-
6
0
6
T
h
e
f
o
u
r
t
h
d
e
r
i
v
a
t
i
v
e
i
s
:
(
4
)
F
(
x
)
=
4
8
-
3
6
0
x
F
o
r
x
e
q
u
a
l
t
o
2
,
(
4
)
F
(
2
)
=
-
6
7
2
T
h
i
s
D
e
m
o
n
s
t
r
a
t
i
o
n
c
a
l
c
u
l
a
t
e
s
t
h
e
f
i
r
s
t
f
o
u
r
d
e
r
i
v
a
t
i
v
e
s
o
f
F
(
x
)
=
c
5
5
x
+
c
4
4
x
+
c
3
3
x
+
c
2
2
x
+
c
1
x
+
c
0
a
n
d
e
v
a
l
u
a
t
e
s
t
h
e
m
a
t
x
f
o
r
-
1
0
≤
x
≤
1
0
.