WOLFRAM|DEMONSTRATIONS PROJECT

Damped Spherical Pendulum

​
start-pause/ reset
mass of bob m
3
damping coefficient μ
0.1
initial conditions
position
θ
0
60°
position
ϕ
0
0
angular speed
θ
0
'
0
angular speed
ϕ
0
'
60°
randomize
viewpoint
default
front
top
​This Demonstration traces the path of the bob on a damped spherical pendulum. The pendulum is suspended at the center of an imaginary sphere that marks the outer bounds of the center of the bob.
The equations of motion are
gmsin(θ(t))+Lm
′′
θ
(t)-Lmsin(θ(t))cos(θ(t))
2
′
ϕ
(t)
+Lμ
′
θ
(t)0
,
2Lm
′
θ
(t)sin(θ(t))cos(θ(t))
′
ϕ
(t)+Lm
2
sin
(θ(t))
′′
ϕ
(t)+Lμ
2
sin
(θ(t))
′
ϕ
(t)0
,
where
θ
and
ϕ
are the spherical coordinates of the center of gravity of the bob. The pendulum rod has length
L=1
(with no loss of generality) and bob mass
m
. The damping coefficient of the system is
μ
. The initial angular positions are
θ
0
and
ϕ
0
and the initial angular speeds are
′
θ
0
and
′
ϕ
0
.