In de Broglie–Bohm theory, the particle has a well-defined trajectory in configuration space, calculated from the gradient of the phase function. An appealing feature of the Bohmian description is that one can impose initial positions for the trajectories, just as for a classical dynamical system, in which the final positions of the particles are determined by their initial positions. Such initial positions are not controllable by the experimenter, so there is an appearance of randomness in the pattern of detection. The wavefunction guides the particles in such a way that the particles are attracted to the regions in which the wave density is large [6, 7]. In the regions with small wave density, the particles will be accelerated.