WOLFRAM NOTEBOOK

WOLFRAM|DEMONSTRATIONS PROJECT

Bicycle Wheels Using Curves of Constant Width

time
0
back wheel sides
3
5
7
9
front wheel sides
3
5
7
9
Curves of constant width are planar curves that maintain the same width and height when rotated. Such curves can be created using any odd number of sides between three and infinity, and include Reuleaux triangles and circles. When rolled as wheels of a bicycle, curves of constant width provide a uniform ride as long as the rider is supported by the top of each wheel rather than by the center, as in traditional bicycles. The only known physical bicycle using curves of constant width was created by Guan Baihua in China. Curves are shown to trace the locations of two points on the back wheel as well as the center of the back wheel over time.
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.