A New Kind of Casimir Energy and Its Implications for Dark Energy
A New Kind of Casimir Energy and Its Implications for Dark Energy
We propose to use metamaterials to mimic de Sitter space. This Demonstration represents the behavior of Casimir energy in a cavity with size and physical cut-off . In this case the total Casimir energy is proportional to . Notably, this would play a role of dark energy and give a possible explanation of cosmic acceleration if is identified with the Plank scale. This result can be tested experimentally.
L
d
L/
2
d
d
We estimate the dominating frequencies contributing to the Casimir energy in a cavity of metamaterials mimicking de Sitter space by solving the eigenvalue problem for the Maxwell equations. It turns out that the dominating frequencies are the inverse of the size of the cavity, and the degeneracy of these frequencies also explains our previous result on the unusually large Casimir energy. Carrying out the experiment in the laboratory is possible theoretically.
The outer circle/sphere represents some kind of metamaterial of dimension . The distance between the outer and inner circle/sphere represents the cut-off, denoted as . The typical frequency of the energy inside the metamaterials is proportional to (represented by the wave inside the circle/sphere). The total energy (represented by the red column) is proportional to .
L
d
1/L
L/
2
d