WOLFRAM|DEMONSTRATIONS PROJECT

A Concurrency from Circumcircles of Subtriangles

​
Let ABC be a triangle and let the incircle intersect BC, CA, and AB at A', B', and C', respectively. Let the circumcircles of AB'C', A'BC', and A'B'C intersect the circumcircle of ABC (apart from A, B, and C) at A'', B'', and C'', respectively. Then A'A'', B'B'', and C'C'' are concurrent.