10-23 Deoxyribozyme Design Optimization
10-23 Deoxyribozyme Design Optimization
10-23 deoxyribozyme [1] is a widely used and powerful application of nanotechnology capable of site-specifically cleaving substrate ssRNA (or ssDNA with a single RNA linkage). 10-23 deoxyribozymes can be designed to target any given sequences as specified by Watson–Crick recognition of its 5' and 3' binding arms. However, proper design of the deoxyribozyme can be a tricky task. If the stability of the binding arms is too weak, catalysis will proceed very slowly due to rate-limiting association/dissociation kinetics. If the stability of the binding arms is too strong, dissociation of the cleaved product strands can become rate-limiting as the system becomes strongly product-inhibited. Furthermore, because DNA hybridization is a concentration-dependent process, the concentration at which the reaction is run will affect the range of optimal binding arm sequences. Thus binding sequences must be carefully optimized by analyzing the kinetic behavior of the overall system with different varying binding arm sequences.
To obtain nearest-neighbor thermodynamic hybridization energies, either specific sequences can be entered or, in the absence of sequence information, lengths can be entered with average parameters by assigning a length for each arm.