In[]:=
(*deployswithcanonicalname*)​​deploy:=Module[{notebookFn,parentDir,cloudFn,result},​​Print[DateString[]];​​notebookFn=FileNameSplit[NotebookFileName[]][[-1]];​​parentDir=FileNameSplit[NotebookFileName[]][[-2]];​​cloudFn=parentDir~StringJoin~"/"~StringJoin~notebookFn;​​result=CloudDeploy[SelectedNotebook[],CloudObject[cloudFn],Permissions"Public",SourceLinkNone];​​Print["Uploading to ",cloudFn];​​result​​];​​deploy
Thu 2 Mar 2023 16:48:43

Loss trajectory of quadratic with eigenvalues following semicircle law

accompanying mathematica.SO:
https://mathematica.stackexchange.com/questions/281808/improving-quality-of-plot-with-bad-numeric-performance
For semi-circle graph CDF, see
https://www.wolframcloud.com/obj/yaroslavvb/newton/forum-bernoulli-graphs.nb
​
In[]:=
interval[var_,min_,max_]:=HeavisideTheta[var-min]-HeavisideTheta[var-max];​​{xmin,xmax}={0,1};​​xvals=Range[xmin,xmax,(xmax-xmin)/10];​​​​icdf[y_]=InverseCDF[WignerSemicircleDistribution[1],y]//Refine[#,0<y<1]&;​​g[x_]=icdf[(1-x/2)];(*reversesort,map0.5->1rangeto0..1*)​​ymin=Limit[g[x],x->xmax];​​ymax=Limit[g[x],x->xmin,Direction"FromAbove"];​​gi[y_]=First@SolveValues[{g[x]==y,xmin<x<xmax},x,Assumptions{ymin<y<ymax}];​​​​arg=-D[gi[y],y]*y;​​fwd=LaplaceTransform[arg*interval[y,ymin,ymax],y,s]/.s->2s;​​​​loss0=Asymptotic[fwd,s->0];​​loss=fwd/loss0//Simplify;​​Print["normalized loss after s steps=",loss];​​​​loss2=(Gamma[0,(2s)/5]-Gamma[0,2s])/Log[5];​​LogPlot[{loss,loss2},{s,1,20},PlotLabel->"loss after s steps",AxesLabel->{"s"},PlotLegends->{"random quadratic","harmonic decay"}]​​
normalized loss after s steps=
1
8
2
s
(4
2
s
-3πsBesselI[0,2s]+3πBesselI[1,2s]-3πsBesselI[2,2s]+3πsStruveL[0,2s]-3πStruveL[1,2s]+3πsStruveL[2,2s])
Out[]=
random quadratic
harmonic decay