In[]:=
deploy
Wed 8 Sep 2021 16:52:42
In[]:=
exportAnim[fn_,images_,is_]:=Module[{},​​rasters=Rasterize[Style[#,AntialiasingTrue],ImageSizeis,RasterSize2is]&/@images;​​SetDirectory[NotebookDirectory[]];​​SetDirectory["export"];​​Export[fn,rasters,"AnimationRepetitions"Infinity]​​];​​​​exportAnimBSP[fn_,im_,is_]:=Module[{},​​images=Style[#,RenderingOptions{"3DRenderingMethod""BSPTree"}]&/@im;​​(*rasters=Rasterize[#,ImageSizeis,RasterSize4is]&/@images;*)​​rasters=images;​​SetDirectory[NotebookDirectory[]];​​SetDirectory["export"];​​Export[fn,rasters,"AnimationRepetitions"Infinity]​​];​​​​exportImage[fn_,im_,is_]:=Module[{},​​raster=Rasterize[im,ImageSizeis,RasterSize2is];​​SetDirectory[NotebookDirectory[]];​​SetDirectory["export"];​​Export[fn,raster]​​];​​​​exportImageBSP[fn_,imm_,is_]:=Module[{},​​im=Style[imm,RenderingOptions{"3DRenderingMethod""BSPTree"}];​​raster=Rasterize[im,ImageSizeis,RasterSize4is];​​SetDirectory[NotebookDirectory[]];​​SetDirectory["export"];​​Export[fn,raster]​​]​​​​(* random map P from k-dimensional to n-dimensional.​​P.x maps to up n dimensions​​x.P maps down to k *)​​randomBasis[k_,n_]:=Module[{M,z,q,r,d,ph},​​z=RandomVariate[NormalDistribution[0,1],{n,n}];​​{q,r}=QRDecomposition[z];​​d=Diagonal[r];​​ph=d/Abs[d];​​M=q*ph;​​M[[;;k]]//Transpose​​];​​​​curve[x_]:=(Cos[Pi(x-1)]+1)/2; (* starts at 0, reaches maximum at 1, second min at 2 *)​​(* like curve, but adds extra 1/2 intervals at maximum and minimum, second min at 3 *)​​flattenedCos[x_]:=Piecewise[{​​{0,x<1/2},​​{curve[x-1/2],1/2<=x<1+1/2},​​{1,1+1/2<=x<2},​​{curve[x-1],2<=x<2+1}​​}];

Util

v=Options[Plot3D,ViewPoint][[1,2]];​​Plot3D[Sin[x+y^2],{x,-3,3},{y,-2,2},ViewPointDynamic[v]]​​Dynamic[v]

Dirichlet distribution


Average value of quadratic form


Minimizing Rosenbrock


Average loss graphs


Rosenbrock trajectories


Worst case analysis


Semidefinite optimization


SGD update + convergence against GD


Linear update of gradient descent


Blessing of dimensionality
