TuringMachine
In[]:=
OneSidedTuringMachineFunction[{596440,2,3},{1,3^4},10^7]
Out[]=
{3,5,4,14,12,7,15,17,10,12,14,13,42,44,16,41,39,19,21,23,22,50,48,25,51,53,28,30,32,31,41,39,34,42,44,37,39,41,40,131,129,43,132,134,46,48,50,49,123,125,52,122,120,55,57,59,58,68,66,61,69,71,64,66,68,67,150,152,70,149,147,73,75,77,76,158,156,79,159,161,82}
OneSidedTuringMachineFunction[{596440,2,3},{1,3^4},10^7]
In[]:=
OneSidedTuringMachineFunction[{596440,2,3},{1,20},10^7]
Out[]=
{3,5,4,14,12,7,15,17,10,12,14,13,42,44,16,41,39,19,21,23}
In[]:=
WorstCasesK[OneSidedTuringMachineFunction[{596440,2,3},{1,3^7},10^7],3]
Out[]=
{5,17,53,161,485,1457,4373}
In[]:=
FindLinearRecurrence[{5,17,53,161,485,1457,4373}]
Out[]=
{4,-3}
In[]:=
FindSequenceFunction[WorstCasesK[OneSidedTuringMachineFunction[{596440,2,3},{1,3^7},10^7],3],n]
Out[]=
-1+2
n
3
In[]:=
OneSidedTuringMachineFind[{OneSidedTuringMachineFunction[{596440,2,3},{1,20},10^7]},10^5,{2,3}]
Out[]=
{}
In[]:=
OneSidedTuringMachineFunction[{596440,2,3},{1,20},10^7]
Out[]=
{3,5,4,14,12,7,15,17,10,12,14,13,42,44,16,41,39,19,21,23}
In[]:=
OneSidedTuringMachineFind[{OneSidedTuringMachineFunction[{596440,2,3},{1,5},10^7]},10^3,{2,3}]
Out[]=
{596364,596365,596366,596367,596368,596369,596370,596371,596372,596373,596374,596375,596436,596437,596438,596439,596440,596441,596442,596443,596444,596445,596446,596447,720789,2089365}
In[]:=
RulePlot[TuringMachine[{596442,2,3}],{1,{{},0}},80]
Out[]=
In[]:=
OneSidedTuringMachineFind[{OneSidedTuringMachineFunction[{596440,2,3},{1,10},10^7]},10^3,{2,3}]
Out[]=
{596436,596437,596438,596439,596440,596441,596442,596443,596444,596445,596446,596447}
In[]:=
OneSidedTuringMachineFind[{OneSidedTuringMachineFunction[{596440,2,3},{1,20},10^7]},10^3,{2,3}]
Out[]=
{596436,596437,596438,596439,596440,596441,596442,596443,596444,596445,596446,596447}
In[]:=
Length[%]
Out[]=
12
In[]:=
OneSidedTuringMachineFind[{OneSidedTuringMachineFunction[{596440,2,3},{1,20},10^7]},10^3,{1,3}]
Out[]=
{}
In[]:=
RulePlot[TuringMachine[{#,2,3}],{1,{{},0}},80]&/@{596436,596437,596438,596439,596440,596441,596442,596443,596444,596445,596446,596447}
Out[]=
,
,
,
,
,
,
,
,
,
,
,
RulePlot[TuringMachine[{#,2,3}],{1,{{},0}},80]&/@{596436,596437,596438,596439,596440,596441,596442,596443,596444,596445,596446,596447}
OneSidedTuringMachineFind[{Range[100]+1},10^5,{3,2}];
In[]:=
OneSidedTuringMachineFunction[{596440,2,3},{1,3^4},10^7]
Out[]=
{3,5,4,14,12,7,15,17,10,12,14,13,42,44,16,41,39,19,21,23,22,50,48,25,51,53,28,30,32,31,41,39,34,42,44,37,39,41,40,131,129,43,132,134,46,48,50,49,123,125,52,122,120,55,57,59,58,68,66,61,69,71,64,66,68,67,150,152,70,149,147,73,75,77,76,158,156,79,159,161,82}
In[]:=
OneSidedTuringMachineFunction[{596436,2,3},{1,3^4},10^7]
Out[]=
{3,5,4,14,12,7,15,17,10,12,14,13,42,44,16,41,39,19,21,23,22,50,48,25,51,53,28,30,32,31,41,39,34,42,44,37,39,41,40,131,129,43,132,134,46,48,50,49,123,125,52,122,120,55,57,59,58,68,66,61,69,71,64,66,68,67,150,152,70,149,147,73,75,77,76,158,156,79,159,161,82}
In[]:=
With[{u=OneSidedTuringMachineFunction[{596440,2,3},{1,3^5},10^7]},OneSidedTuringMachineFunction[{#,2,3},{1,3^5},10^7]==u&/@{596436,596437,596438,596439,596441,596442,596443,596444,596445,596446,596447}]
Out[]=
{True,True,True,True,True,True,True,True,True,True,True}
In[]:=
Length
Out[]=
11
In[]:=
ParallelMap[WorstCasesK[OneSidedTuringMachineFunction[{#,2,3},{1,3^7},10^7],3]&,{596436,596437,596438,596439,596441,596442,596443,596444,596445,596446,596447}]
Out[]=
{{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373},{5,17,53,161,485,1457,4373}}
In[]:=
(3×3×2)^(3×3)
Out[]=
198359290368
In[]:=
OneSidedTuringMachineFind[{OneSidedTuringMachineFunction[{596440,2,3},{1,20},10^7]},10^3,{3,2}]
Out[]=
{}
In[]:=
RulePlot[TuringMachine[{596440,2,3}],{1,{{1},0}},80]
Out[]=
s=3, k=2
s=3, k=2
s=2, k=3
s=2, k=3
s=3, k=2
s=3, k=2