WOLFRAM NOTEBOOK

In[]:=
BarChart[Quiet[ReplaceAll[Divide@@(Table[Lookup[#,i,0],{i,1969,2025}]&/@{Total[#[[All,2]]]&/@GroupBy[Normal[Count[#,None]&/@resall],$LifeData[#[[1]]]["Year"]&],Length/@GroupBy[Values[$LifeData],#Year&]}),Indeterminate->0]],Frame->True,FrameTicks->{{True,Automatic},{Table[If[Mod[i,10]==2,{i,i+1968},i],{i,2,2025-1969+1,10}],True}}]
Out[]=
In[]:=
BarChart[Quiet[ReplaceAll[Divide@@(Table[Lookup[#,i,0],{i,1969,2025}]&/@{Total[#[[All,2]]]&/@GroupBy[Normal[Count[#,None]/Length[#]&/@resall],$LifeData[#[[1]]]["Year"]&],Length/@GroupBy[Values[$LifeData],#Year&]}),Indeterminate->0]],Frame->True,FrameTicks->{{True,Automatic},{Table[If[Mod[i,10]==2,{i,i+1968},i],{i,2,2025-1969+1,10}],True}}]
Out[]=
In[]:=
BarChart[Quiet[ReplaceAll[Divide@@(Table[Lookup[#,i,0],{i,1969,2025}]&/@{Total[#[[All,2]]]&/@GroupBy[Normal[Count[#,None]&/@resall],$LifeData[#[[1]]]["Year"]&],Total[#[[All,2]]]&/@GroupBy[Normal[Length/@resall],$LifeData[#[[1]]]["Year"]&]}),Indeterminate->0]],Frame->True,FrameTicks->{{True,Automatic},{Table[If[Mod[i,10]==2,{i,i+1968},i],{i,2,2025-1969+1,10}],True}}]
Out[]=
In[]:=
resall=
;
In[]:=
oresall=
;
In[]:=
xresall=
;
In[]:=
BarChart[Transpose@{(*Style[*)Values[Mean[#[[All,2]]]&/@GroupBy[Normal[Quiet[(Count[#,None]&/@resall)/.Indeterminate->0]],$LifeData[#[[1]]]["Year"]&]],Values[Mean[#[[All,2]]]&/@GroupBy[Normal[Quiet[(Length/@resall)/.Indeterminate->0]],$LifeData[#[[1]]]["Year"]&]]},ChartLayout->"Stacked",FrameTicks->{{True,Automatic},{Table[If[Mod[i,10]==2,{i,i+1968},i],{i,2,2025-1969+1,10}],True}},Frame->True,AspectRatio->.4]
Out[]=
In[]:=
BarChart[Transpose@(Table[Lookup[#,i,0],{i,1969,2025}]&/@{(*Style[*)Mean[#[[All,2]]]&/@GroupBy[Normal[Quiet[(Count[#,None]&/@resall)/.Indeterminate->0]],$LifeData[#[[1]]]["Year"]&],Mean[#[[All,2]]]&/@GroupBy[Normal[Quiet[(Length/@resall)/.Indeterminate->0]],$LifeData[#[[1]]]["Year"]&]}),ChartLayout->"Stacked",FrameTicks->{{True,Automatic},{Table[If[Mod[i,10]==2,{i,i+1968},i],{i,2,2025-1969+1,10}],True}},Frame->True]
Out[]=
In[]:=
ListPointPlot3D[{Catenate[KeyValueMap[Function[{year,items},MapIndexed[{year,#2[[1]],#[[2]]}&,items]],GroupBy[Normal[Quiet[(Count[#,None]&/@resall)/.Indeterminate->0]],$LifeData[#[[1]]]["Year"]&]]],Catenate[KeyValueMap[Function[{year,items},MapIndexed[{year,#2[[1]],#[[2]]}&,items]],GroupBy[Normal[Quiet[(Length[#]&/@resall)/.Indeterminate->0]],$LifeData[#[[1]]]["Year"]&]]]},Filling->Bottom]
Out[]=

“Purposeful”

In[]:=
Select[$LifeData,Max[Dimensions[#MatrixData]]<=16&]
Out[]=
BeehiveNameBeehive,Year1969,ClassStrict still life,Wikihttps://conwaylife.com/wiki/Procrastinator,DataFiles{beehive.cells,beehive.rle},MatrixDataSparseArray[Automatic,{3,4},0,{1,{{0,2,4,6},{{2},{3},{1},{4},{2},{3}}},{1,1,1,1,1,1}}],InitialWeight6,
450
,p10lonedotsparkerNamep10lonedotsparker,ClassOscillator,
5
,InitialWeight61
Full expression not available
(
original memory size:
1.2 MB)
In[]:=
Length[%]
Out[]=
452
In[]:=
Counts#Class&/@
Out[]=
Strict still life169,Oscillator173,Spark11,Spaceship31,Still life component5,Methuselah30,Pseudo still life3,Induction coil7,Rotor6,Constellation6,Eater3,Puffer2,Conduit5,Problem1

Random Initial Conditions

How long until it resolves to structures we already know?
Ed’s estimates: 3965, 4660, 2600, 4110

Size 3

Gosper

Oscillators

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.