In[]:=
Table[Labeled[PlotCA[With[{ru={299459058088077823758143088095350287424,4,1}},SeedRandom[424324+i];PerturbCA[{getca[ru,150],ru},"NRandom"->1]],ImageSize->{Automatic,400}],i],{i,40}]
Out[]=

1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40

In[]:=
Table[Labeled[PlotCA[With[{ru={299459058088077823758143088095350287424,4,1}},SeedRandom[424324+i];PerturbCA[{getca[ru,110],ru},"NRandom"->1]],ImageSize->{Automatic,400}],i],{i,40}]
Out[]=

1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
30
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
40


Symptoms

To do

Enumerate all possible perturbations to our “standard example”

Classify these.... Case 1: FeatureSpacePlot; Case 2: various “symptom” feature detectors
Lifetime distribution for all perturbations

Symptoms

Total height ; total width
Width at a certain time step
Have perturbations only before time step 30. Then plot width at step 35 (say) vs. lifetime

All Possible Diseases

It’s a different perturbation, so there can never be duplicates:
If width at sampled step is large, will probably have large lifetime
[[[ Not accounting for “excess growth” etc. ]]]
[[[ some of these are tumors ]]

Treatment

Can we extend the lifespan of a short-lived case?
For a given short lifetime case, try all possible future perturbations; which ones have a good effect?
We only detected at 30 ....

Genetic Diversity