WOLFRAM NOTEBOOK

In[]:=
AxiomaticTheory["ShefferAxioms"]
Out[]=
a.
(a.·a.)·(a.·a.)a.,
{a.,b.}
a.·(b.·(b.·b.))a.·a.,
{a.,b.,c.}
(a.·(b.·c.))·(a.·(b.·c.))((b.·b.)·a.)·((c.·c.)·a.)
In[]:=
AxiomaticTheory[]
Out[]=
{AbelianGroupAxioms,AbelianMcCuneAxioms,AbelianTarskiAxioms,BooleanAxioms,CentralGroupoidAxioms,CombinatorAxioms,CommutativeRingAxioms,CommutativeRingWithIdentityAxioms,EquivalentialCalculusAxioms,FieldAxioms,GroupAxioms,HigmanNeumannAxioms,HillmanAxioms,HuntingtonAxioms,ImplicationalCalculusAxioms,JunctionalCalculusAxioms,LeftNearRingAxioms,McCuneAxioms,MeadowAxioms,MeredithAxioms,MonoidAxioms,OrNotBooleanAxioms,RightNearRingAxioms,RingAxioms,RingWithIdentityAxioms,RobbinsAxioms,SemigroupAxioms,SemiringAxioms,ShefferAxioms,SquagAxioms,WolframAlternateAxioms,WolframAxioms,WolframCommutativeAxioms}
In[]:=
AxiomaticTheory["HillmanAxioms"]
Out[]=
{a.,b.}
(a.·a.)·(a.·b.)a.,
{a.,b.}
a.·(a.·b.)a.·(b.·b.),
{a.,b.,c.}
a.·(a.·(b.·c.))b.·(b.·(a.·c.))
In[]:=
AxiomaticTheory["MeredithAxioms"]
Out[]=
{a.,b.,c.}
a.·(b.·(a.·c.))((c.·b.)·b.)·a.,
{a.,b.}
(a.·a.)·(b.·a.)a.
In[]:=
AxiomaticTheory["WolframAlternateAxioms"]
Out[]=
{a.,b.,c.}
(a.·((c.·a.)·a.))·(c.·(b.·a.))c.
In[]:=
AxiomaticTheory["WolframCommutativeAxioms"]
Out[]=
{a.,b.}
a.·b.b.·a.,
{a.,b.,c.}
(a.·b.)·(a.·(b.·c.))a.
In[]:=
AxiomaticTheory["BooleanAxioms"]
Out[]=
{a.,b.}
a.b.b.a.,
{a.,b.,c.}
a.(b.c.)a.b.a.c.,
{a.,b.}
a.b.
b.
a.,
{a.,b.}
a.b.
b.
a.,
{a.,b.}
a.b.b.a.,
{a.,b.,c.}
a.b.c.(a.b.)(a.c.)
In[]:=
FindEquationalProof[(a.·((c.·a.)·a.))·(c.·(b.·a.))c.,"WolframAxioms"]
Out[]=
ProofObject
Logic: EquationalLogic
Steps: 109
Theorem: (a.·((c.·a.)·a.))·(c.·(b.·a.))c.
In[]:=
FindEquationalProof[(a.·((c.·a.)·a.))·(c.·(b.·a.))c.,"WolframCommutativeAxioms"]
Out[]=
ProofObject
Logic: EquationalLogic
Steps: 18
Theorem: (a.·((c.·a.)·a.))·(c.·(b.·a.))c.
In[]:=
ProofGraph[%74]
Out[]=
In[]:=
ProofGraph[%74,"TokenLabeling"->True]
Out[]=
In[]:=
Clear[ReverseProofGraph]
In[]:=
ReverseProofGraph[FindEquationalProof[(a.·((c.·a.)·a.))·(c.·(b.·a.))c.,"WolframCommutativeAxioms"]]
Out[]=
In[]:=
ReverseProofGraph@Once@FindEquationalProof[{p·q==q·p,(p·p)·(p·p)==p},AxiomaticTheory["WolframAxioms"]]
Out[]=

Waldmeister Options

Proof Display

Proof Step

Same thing, but with different names:
Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.