[ From FromBrad/results-k2r2Sym.nb ]
In[]:=
levelsk2r2Sym=
Out[]=
0{{0,65815}},1{{276,285295007}},2{{1048868,156317055},{1049892,3507586495}},3{{139469092,424769023},{139473252,3646010879},{269484468,424769023},{1343260068,3646010879},{3222308132,3507602879}},4{{1343260084,3646027263},{3360731492,3646027263}},5{{269616548,4120108543},{269632932,4154449919},{613570916,4258528767},{2416985508,4189312511},{2551203236,4260494847}},6{{35541860,2145386495},{204478820,1039367679},{269501860,4122205695},{303974308,4292870143},{749754724,4260494847},{2419066276,4122074623},{2419082660,4156415999}},7{{70261092,494108159},{749738340,2113011199},{815792532,968316927},{947913108,1033330687},{1476690836,4187478015},{2419066292,4122074623},{2453424036,4294836223},{2961310100,4120371199}},8{{1889699220,4260888575},{2555536804,4294967295}},9{{336612772,4260625919},{2555405732,4260625919},{3970996580,4260494847}},10{{716968804,4294967295}},11{{335546772,1035427839},{336727476,4294967295},{2484211124,4294967295}},12{{370806196,4294967295},{1823512932,4294967295},{2485258644,4294967295},{2489461140,4294967295},{2518289844,4294967295}},13{{303695284,4290502143},{2451178932,4290502143},{2519337364,4294967295},{2623678868,4294967295},{3938227044,4294967295}},14{{503843220,1069506559},{848954804,4160749567},{1445759892,4290764799},{3164735892,4260888575}},15{{1344570260,4290764799}},16{{2418147732,4160749567}},17{{649615716,4294704639},{849086372,4294967295},{2452226452,4160749567}},18{{3028421012,4294967295}},19{{814745012,4294967295},{880937364,4156547071},{2486177204,4290764799},{2487363988,4160749567},{2585396644,4294967295}},20{{848823732,4294967295}},21{{2619476372,4294967295}},22{{1514709396,4294967295}},23{{438044596,4288667647},{3662193044,4294967295}},25{{615536996,2147483647},{3029470644,4294967295}},28{{2417100196,4294967295},{3392835940,4294967295}},39{{3063549364,4294967295}},45{{2417362868,4294967295}},64{{2455381412,4294967295}}
Brad code
Brad code
More
More
In[]:=
vwr2k2Sym=vertexMultiplicity[res1,20,downSample]
Out[]=
{{0,65815}}65536,{{276,285295007}}8192,{{1048868,156317055},{1049892,3507586495}}2048,{{269484468,424769023}}256,{{1343260068,3646010879}}128,{{139469092,424769023},{139473252,3646010879},{3222308132,3507602879}}896,{{1343260084,3646027263}}64,{{3360731492,3646027263}}64,{{613570916,4258528767}}8,{{269616548,4120108543},{269632932,4154449919},{2416985508,4189312511},{2551203236,4260494847}}64,{{35541860,2145386495}}4,{{204478820,1039367679}}16,{{749754724,4260494847}}8,{{269501860,4122205695},{303974308,4292870143}}18,{{2419066276,4122074623},{2419082660,4156415999}}40,{{1476690836,4187478015}}16,{{2419066292,4122074623}}32,{{2453424036,4294836223}}2,{{70261092,494108159},{749738340,2113011199}}48,{{815792532,968316927},{947913108,1033330687},{2961310100,4120371199}}80,{{1889699220,4260888575}}2,{{2555536804,4294967295}}1,{{336612772,4260625919}}4,{{2555405732,4260625919}}4,{{3970996580,4260494847}}8,{{716968804,4294967295}}1,{{335546772,1035427839}}16,{{336727476,4294967295},{2484211124,4294967295}}2,{{1823512932,4294967295}}1,{{370806196,4294967295},{2518289844,4294967295}}2,{{2485258644,4294967295},{2489461140,4294967295}}2,{{2519337364,4294967295}}1,{{2623678868,4294967295}}1,{{3938227044,4294967295}}1,{{303695284,4290502143},{2451178932,4290502143}}8,{{503843220,1069506559}}8,{{848954804,4160749567}}2,{{1445759892,4290764799}}2,{{3164735892,4260888575}}2,{{1344570260,4290764799}}2,{{2418147732,4160749567}}2,{{649615716,4294704639}}2,{{849086372,4294967295}}1,{{2452226452,4160749567}}2,{{3028421012,4294967295}}1,{{814745012,4294967295}}1,{{880937364,4156547071}}4,{{2486177204,4290764799}}2,{{2487363988,4160749567}}2,{{2585396644,4294967295}}1,{{848823732,4294967295}}1,{{2619476372,4294967295}}1,{{1514709396,4294967295}}1,{{438044596,4288667647}}4,{{3662193044,4294967295}}1,{{615536996,2147483647}}2,{{3029470644,4294967295}}1,{{2417100196,4294967295}}1,{{3392835940,4294967295}}1,{{3063549364,4294967295}}1,{{2417362868,4294967295}}1,{{2455381412,4294967295}}1
In[]:=
ltk2r2Sym
Out[]=
{0,65815}0,{276,285295007}1,{1048868,156317055}2,{1049892,3507586495}2,{139469092,424769023}3,{139473252,3646010879}3,{269484468,424769023}3,{1343260068,3646010879}3,{3222308132,3507602879}3,{1343260084,3646027263}4,{3360731492,3646027263}4,{269616548,4120108543}5,{269632932,4154449919}5,{613570916,4258528767}5,{2416985508,4189312511}5,{2551203236,4260494847}5,{35541860,2145386495}6,{204478820,1039367679}6,{269501860,4122205695}6,{303974308,4292870143}6,{749754724,4260494847}6,{2419066276,4122074623}6,{2419082660,4156415999}6,{70261092,494108159}7,{749738340,2113011199}7,{815792532,968316927}7,{947913108,1033330687}7,{1476690836,4187478015}7,{2419066292,4122074623}7,{2453424036,4294836223}7,{2961310100,4120371199}7,{1889699220,4260888575}8,{2555536804,4294967295}8,{336612772,4260625919}9,{2555405732,4260625919}9,{3970996580,4260494847}9,{716968804,4294967295}10,{335546772,1035427839}11,{336727476,4294967295}11,{2484211124,4294967295}11,{370806196,4294967295}12,{1823512932,4294967295}12,{2485258644,4294967295}12,{2489461140,4294967295}12,{2518289844,4294967295}12,{303695284,4290502143}13,{2451178932,4290502143}13,{2519337364,4294967295}13,{2623678868,4294967295}13,{3938227044,4294967295}13,{503843220,1069506559}14,{848954804,4160749567}14,{1445759892,4290764799}14,{3164735892,4260888575}14,{1344570260,4290764799}15,{2418147732,4160749567}16,{649615716,4294704639}17,{849086372,4294967295}17,{2452226452,4160749567}17,{3028421012,4294967295}18,{814745012,4294967295}19,{880937364,4156547071}19,{2486177204,4290764799}19,{2487363988,4160749567}19,{2585396644,4294967295}19,{848823732,4294967295}20,{2619476372,4294967295}21,{1514709396,4294967295}22,{438044596,4288667647}23,{3662193044,4294967295}23,{615536996,2147483647}25,{3029470644,4294967295}25,{2417100196,4294967295}28,{3392835940,4294967295}28,{3063549364,4294967295}39,{2417362868,4294967295}45,{2455381412,4294967295}64
{rule,lifetime,multiplicity}
In[]:=
phenotypicMultiplicity[type_,max_,down_:Identity]:=Power[2,max-DigitCount[down[type[[2]]],2,1]]
In[]:=
KeyValueMap[{#1,#2,phenotypicMultiplicity[#1,20,downSample]}&,ltk2r2Sym]
Out[]=
{{{0,65815},0,65536},{{276,285295007},1,8192},{{1048868,156317055},2,1024},{{1049892,3507586495},2,1024},{{139469092,424769023},3,256},{{139473252,3646010879},3,128},{{269484468,424769023},3,256},{{1343260068,3646010879},3,128},{{3222308132,3507602879},3,512},{{1343260084,3646027263},4,64},{{3360731492,3646027263},4,64},{{269616548,4120108543},5,32},{{269632932,4154449919},5,8},{{613570916,4258528767},5,8},{{2416985508,4189312511},5,16},{{2551203236,4260494847},5,8},{{35541860,2145386495},6,4},{{204478820,1039367679},6,16},{{269501860,4122205695},6,16},{{303974308,4292870143},6,2},{{749754724,4260494847},6,8},{{2419066276,4122074623},6,32},{{2419082660,4156415999},6,8},{{70261092,494108159},7,32},{{749738340,2113011199},7,16},{{815792532,968316927},7,32},{{947913108,1033330687},7,32},{{1476690836,4187478015},7,16},{{2419066292,4122074623},7,32},{{2453424036,4294836223},7,2},{{2961310100,4120371199},7,16},{{1889699220,4260888575},8,2},{{2555536804,4294967295},8,1},{{336612772,4260625919},9,4},{{2555405732,4260625919},9,4},{{3970996580,4260494847},9,8},{{716968804,4294967295},10,1},{{335546772,1035427839},11,16},{{336727476,4294967295},11,1},{{2484211124,4294967295},11,1},{{370806196,4294967295},12,1},{{1823512932,4294967295},12,1},{{2485258644,4294967295},12,1},{{2489461140,4294967295},12,1},{{2518289844,4294967295},12,1},{{303695284,4290502143},13,4},{{2451178932,4290502143},13,4},{{2519337364,4294967295},13,1},{{2623678868,4294967295},13,1},{{3938227044,4294967295},13,1},{{503843220,1069506559},14,8},{{848954804,4160749567},14,2},{{1445759892,4290764799},14,2},{{3164735892,4260888575},14,2},{{1344570260,4290764799},15,2},{{2418147732,4160749567},16,2},{{649615716,4294704639},17,2},{{849086372,4294967295},17,1},{{2452226452,4160749567},17,2},{{3028421012,4294967295},18,1},{{814745012,4294967295},19,1},{{880937364,4156547071},19,4},{{2486177204,4290764799},19,2},{{2487363988,4160749567},19,2},{{2585396644,4294967295},19,1},{{848823732,4294967295},20,1},{{2619476372,4294967295},21,1},{{1514709396,4294967295},22,1},{{438044596,4288667647},23,4},{{3662193044,4294967295},23,1},{{615536996,2147483647},25,2},{{3029470644,4294967295},25,1},{{2417100196,4294967295},28,1},{{3392835940,4294967295},28,1},{{3063549364,4294967295},39,1},{{2417362868,4294967295},45,1},{{2455381412,4294967295},64,1}}
In[]:=
ImageCollage{ArrayPlot[ArrayPad[CellularAutomaton[{#[[1,1]],2,2},{{1},0},#[[2]]+1],{{0,0},{1,1}}],Mesh->(#[[2]]<20)],#[[3]]}&/@,Background->LightGray
Out[]=
In[]:=
ImageCollage{ArrayPlot[ArrayPad[CellularAutomaton[{#[[1,1]],2,2},{{1},0},#[[2]]+1],{{0,0},{1,1}}],Mesh->(#[[2]]<20)],Log2[#[[3]]]}&/@,Background->LightGray
Plot relative frequency of each phenotype vs. time [ assuming at every step there is random mutation ]
StackedListPlot[ ]
StackedListPlot[ ]
<<< Investigate how the picture changes when we allow backsliding in fitness >>>
Taxonomic vs. Genomic Classification
Taxonomic vs. Genomic Classification
Building up
Building up
Where in the evolution do new cases occur?
Plot bit relative to the previous rule
Plot bit relative to the previous rule
[[ Want to show only those rule cases that are different ]]
[[[ Do rules ever stop being used? ]]]
Cumulative Use of Rules
Cumulative Use of Rules
Perturbations
Perturbations