WOLFRAM NOTEBOOK

In[]:=
Take[{1,1,2,4,11,27,83,255,847,2829,9734,33724,118245,416816,1478602,5267171,18840144,67611472,243378415,878407170,3178068821,11523323634,41865833602,152382134767},14]
Out[]=
{1,1,2,4,11,27,83,255,847,2829,9734,33724,118245,416816}
In[]:=
Take[ResourceData["Polyform Database"]["polyomino 2-sided"]["PolyformCounts"],14]
Out[]=
{1,1,2,5,12,35,108,369,1285,4655,17073,63600,238591,901971}
In[]:=
%-%%
Out[]=
{0,0,0,1,1,8,25,114,438,1826,7339,29876,120346,485155}
In[]:=
Length[{1,1,2,4,11,27,83,255,847,2829,9734,33724,118245,416816,1478602,5267171,18840144,67611472,243378415,878407170,3178068821,11523323634,41865833602,152382134767}]
Out[]=
24
In[]:=
Take[ResourceData["Polyform Database"]["polyomino 2-sided"]["PolyformCounts"],24]/{1,1,2,4,11,27,83,255,847,2829,9734,33724,118245,416816,1478602,5267171,18840144,67611472,243378415,878407170,3178068821,11523323634,41865833602,152382134767}
Out[]=
1,1,1,
5
4
,
12
11
,
35
27
,
108
83
,
123
85
,
1285
847
,
4655
2829
,
17073
9734
,
15900
8431
,
238591
118245
,
901971
416816
,
1713288
739301
,
1868465
752453
,
50107909
18840144
,
48155513
16902868
,
106089176
34768345
,
95689065
29280239
,
11123060678
3178068821
,
7198642948
1920553939
,
84023503864
20932916801
,
654999700403
152382134767
In[]:=
N[%]
Out[]=
{1.,1.,1.,1.25,1.09091,1.2963,1.3012,1.44706,1.51712,1.64546,1.75396,1.8859,2.01777,2.16395,2.31744,2.48317,2.65964,2.84896,3.05132,3.26804,3.49994,3.74821,4.01394,4.2984}
In[]:=
ListLinePlot[%]
Out[]=
In[]:=
ListLogPlot[%]
Out[]=
In[]:=
Ratios[%239]
Divide
:Indeterminate expression
0
0
encountered.
Divide
:Indeterminate expression
0
0
encountered.
Divide
:Infinite expression
1
0
encountered.
Out[]=
Indeterminate,Indeterminate,ComplexInfinity,1,8,
25
8
,
114
25
,
73
19
,
913
219
,
7339
1826
,
29876
7339
,
60173
14938
,
485155
120346
,
1947974
485155
,
558006
139141
,
31267765
7812084
,
25002116
6253553
,
499245817
125010580
,
1992264780
499245817
,
240757329
60371660
,
3518726006
882776873
,
63090587063
15834267027
,
251308782818
63090587063
In[]:=
%//N
Out[]=
{Indeterminate,Indeterminate,ComplexInfinity,1.,8.,3.125,4.56,3.84211,4.16895,4.01917,4.07085,4.02818,4.03133,4.01516,4.01036,4.00249,3.99807,3.99363,3.99055,3.98792,3.98597,3.98443,3.9833}
In[]:=
%-%%
Out[]=
{-23,-23,-22,-19,-12,11,84,345,1261,4631,17049,63576,238567,901947,3426552,13079231,50107885,192622028,742624208,2870671926,11123060654,43191857664,168047007704,654999700379}
In[]:=
SeedRandom[435646];AggregationArrayPlot[{1}][Last[RandomTotalisticAggregation[{{1},Join[IdentityMatrix[2],-IdentityMatrix[2]]},Position[CrossMatrix[{1,1}],1]-2,500]],"Boundary"->True,Padding->1]
Out[]=
In[]:=
GraphicsGrid[Partition[Labeled[(SeedRandom[435646];AggregationArrayPlot[#][Last[RandomTotalisticAggregation[{#,Join[IdentityMatrix[2],-IdentityMatrix[2]]},Position[CrossMatrix[{1,1}],1]-2,500]],"Boundary"->True,Padding->1]),Text[#]]&/@Select[Subsets[Range[4]],MemberQ[1]],4]]
Out[]=
In[]:=
(SeedRandom[435646];AggregationArrayPlot[#][Last[RandomTotalisticAggregation[{#,Join[IdentityMatrix[2],-IdentityMatrix[2]]},Position[CrossMatrix[{1,1}],1]-2,500]],"Boundary"->True,Padding->1])&@{1,4}
Out[]=
In[]:=
Labeled[With[{ru=#},Graph[AddVertexArrayPlots[ru][TotalisticAggregationMultiwayGraph[{ru,Join[IdentityMatrix[2],-IdentityMatrix[2]]},{{0,0}},4,"Canonicalize"->True]],AspectRatio->1/2,VertexSize->1,ImageSize->500,GraphLayout->"LayeredDigraphEmbedding"]],Text[#]]&/@Select[Subsets[Range[4]],MemberQ[1]]

Graph

Random Evolution

Want to show the aging of the cells....

{2} case

Wolfram Cloud

You are using a browser not supported by the Wolfram Cloud

Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.


I understand and wish to continue anyway »

You are using a browser not supported by the Wolfram Cloud. Supported browsers include recent versions of Chrome, Edge, Firefox and Safari.